【題目】設(shè)S,T是R的兩個(gè)非空子集,如果存在一個(gè)從S到T的函數(shù)y=f(x)滿(mǎn)足:(i)T={f(x)|x∈S};(ii)對(duì)任意x1 , x2∈S,當(dāng)x1<x2時(shí),恒有f(x1)<f(x2),那么稱(chēng)這兩個(gè)集合“保序同構(gòu)”,以下集合對(duì)不是“保序同構(gòu)”的是(
A.A=N* , B=N
B.A={x|﹣1≤x≤3},B={x|x=﹣8或0<x≤10}
C.A={x|0<x<1},B=R
D.A=Z,B=Q

【答案】D
【解析】解:對(duì)于A=N* , B=N,存在函數(shù)f(x)=x﹣1,x∈N* , 滿(mǎn)足:(i)B={f(x)|x∈A};(ii)對(duì)任意x1 , x2∈A,當(dāng)x1<x2時(shí),恒有f(x1)<f(x2),所以選項(xiàng)A是“保序同構(gòu)”;
對(duì)于A={x|﹣1≤x≤3},B={x|x=﹣8或0<x≤10},存在函數(shù) ,滿(mǎn)足:
(i)B={f(x)|x∈A};(ii)對(duì)任意x1 , x2∈A,當(dāng)x1<x2時(shí),恒有f(x1)<f(x2),所以選項(xiàng)B是“保序同構(gòu)”;
對(duì)于A={x|0<x<1},B=R,存在函數(shù)f(x)=tan( ),滿(mǎn)足:(i)B={f(x)|x∈A};
(ii)對(duì)任意
x1 , x2∈A,當(dāng)x1<x2時(shí),恒有f(x1)<f(x2),所以選項(xiàng)C是“保序同構(gòu)”;
前三個(gè)選項(xiàng)中的集合對(duì)是“保序同構(gòu)”,由排除法可知,不是“保序同構(gòu)”的只有D.
故選D.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用函數(shù)單調(diào)性的判斷方法,掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a>0,函數(shù)
(1)記f(x)在區(qū)間[0,4]上的最大值為g(a),求g(a)的表達(dá)式;
(2)是否存在a使函數(shù)y=f(x)在區(qū)間(0,4)內(nèi)的圖象上存在兩點(diǎn),在該兩點(diǎn)處的切線(xiàn)互相垂直?若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減.

(Ⅰ)若,求的值;

(Ⅱ)求函數(shù)在區(qū)間上的最小值(用表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某個(gè)產(chǎn)品有若千零部件構(gòu)成,加工時(shí)需要經(jīng)過(guò)6道工序,分別記為.其中,有些工序因?yàn)槭侵圃觳煌牧悴考,所以可以在幾臺(tái)機(jī)器上同時(shí)加工;有些工序因?yàn)槭菍?duì)同一個(gè)零部件進(jìn)行處理,所以存在加工順序關(guān)系.若加工工序必須要在工序完成后才能開(kāi)工,則稱(chēng)的緊前工序.現(xiàn)將各工序的加工次序及所需時(shí)間(單位:小時(shí))列表如下:

工序

加工時(shí)間

3

4

2

2

2

1

緊前工序

無(wú)

無(wú)

現(xiàn)有兩臺(tái)性能相同的生產(chǎn)機(jī)器同時(shí)加工該產(chǎn)品,則完成該產(chǎn)品的最短加工時(shí)間是__________小時(shí).(假定每道工序只能安排在一臺(tái)機(jī)器上,且不能間斷).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀如圖所示的程序框圖,若輸入的k=10,則該算法的功能是(

A.計(jì)算數(shù)列{2n1}的前10項(xiàng)和
B.計(jì)算數(shù)列{2n1}的前9項(xiàng)和
C.計(jì)算數(shù)列{2n﹣1}的前10項(xiàng)和
D.計(jì)算數(shù)列{2n﹣1}的前9項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓心為的圓,滿(mǎn)足下列條件:圓心位于軸正半軸上,與直線(xiàn)相切且被軸截得的弦長(zhǎng)為,圓的面積小于13.

(Ⅰ)求圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)過(guò)點(diǎn)的直線(xiàn)與圓交于不同的兩點(diǎn),以為鄰邊作平行四邊形.是否存在這樣的直線(xiàn),使得直線(xiàn)恰好平行?如果存在,求出的方程;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=xax+(a1)。

1)討論函數(shù)的單調(diào)性;

2)證明:若,則對(duì)任意x,xxx,有。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)某種書(shū)籍的成本費(fèi)(元)與印刷冊(cè)數(shù)(千冊(cè))的數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

表中.

為了預(yù)測(cè)印刷20千冊(cè)時(shí)每?jī)?cè)的成本費(fèi),建立了兩個(gè)回歸模型:.

(1)根據(jù)散點(diǎn)圖,擬認(rèn)為選擇哪個(gè)模型預(yù)測(cè)更可靠?(只選出模型即可)

(2)根據(jù)所給數(shù)據(jù)和(1)中的模型選擇,求關(guān)于的回歸方程,并預(yù)測(cè)印刷20千冊(cè)時(shí)每?jī)?cè)的成本費(fèi).

附:對(duì)于一組數(shù)據(jù),其回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx=sin+cos,x∈R

1)求函數(shù)fx)的最小正周期,并求函數(shù)fx)在x∈[﹣2π2π]上的單調(diào)遞增區(qū)間;

2)函數(shù)fx=sinxx∈R)的圖象經(jīng)過(guò)怎樣的平移和伸縮變換可以得到函數(shù)fx)的圖象.

查看答案和解析>>

同步練習(xí)冊(cè)答案