【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,2cos(A﹣C)+cos2B=1+2cosAcosC.
(1)求證:a,b,c依次成等比數(shù)列;
(2)若b=2,求u=| |的最小值,并求u達到最小值時cosB的值.

【答案】
(1)證明:∵2cos(A﹣C)+cos2B=1+2cosAcosC,

∴2cosAcosC+2sinAsinC+1﹣2sin2B=1+2cosAcosC,

即2sinAsinC﹣2sin2B=0,

即sinAsinC=sin2B,

即ac=b2

∴a,b,c依次成等比數(shù)列


(2)解:若b=2,則ac=4,

則u=| |=| |=|a﹣c|+| |≥2

當且僅當|a﹣c|= 時,u=| |取最小值2 ,

此時cosB= = =


【解析】(1)將已知中2cos(A﹣C)+cos2B=1+2cosAcosC展開合并,再用正弦定理即可得到結論;(2)若b=2,則ac=4,利用基本不等式,可得當且僅當|a﹣c|= 時,u=| |取最小值2 ,再由余弦定理,可得cosB的值.
【考點精析】根據(jù)題目的已知條件,利用基本不等式在最值問題中的應用和正弦定理的定義的相關知識可以得到問題的答案,需要掌握用基本不等式求最值時(積定和最小,和定積最大),要注意滿足三個條件“一正、二定、三相等”;正弦定理:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

已知,且.

(1)求的最小值;

(2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在銳角△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且2asinB= b.
(1)求角A的大;
(2)若a=6,b+c=8,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知多面體的底面是邊長為2的正方形, 底面 ,且

(Ⅰ)記線段的中點為,在平面內(nèi)過點作一條直線與平面平行,要求保留作圖痕跡,但不要求證明.

(Ⅱ)求直線與平面所成角的正弦值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin(x﹣ )(x∈R),下面結論錯誤的是(
A.函數(shù)f(x)的最小正周期為2π
B.函數(shù)f(x)在區(qū)間[0, ]上是增函數(shù)
C.函數(shù)f(x)的圖象關于直線x=0對稱
D.函數(shù)f(x)是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】f(x)=2cos2x﹣2acosx﹣1﹣2a的最小值為g(a),a∈R
(1)求g(a);
(2)若g(a)= ,求a及此時f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方形與梯形所在的平面互相垂直,

的中點.

(1)求證: 平面;

(2)求證: 平面;

(3)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,cos2B﹣5cos(A+C)=2.
(1)求角B的值;
(2)若cosA= ,△ABC的面積為10 ,求BC邊上的中線長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若關于x的不等式ax2+bx+c>0的解集為{x|﹣1<x<2},則關于x的不等式cx2+bx+a>0的解集是

查看答案和解析>>

同步練習冊答案