【題目】(本小題滿(mǎn)分12分)已知橢圓的離心率為,橢圓的短軸端點(diǎn)與雙曲線(xiàn)的焦點(diǎn)重合,過(guò)點(diǎn)且不垂直于軸的直線(xiàn)與橢圓相交于兩點(diǎn).

1)求橢圓的方程;

2)求的取值范圍.

【答案】1;(2

【解析】試題分析:(1)設(shè)橢圓的方程,若焦點(diǎn)明確,設(shè)橢圓的標(biāo)準(zhǔn)方程,結(jié)合條件用待定系數(shù)法求出的值,若不明確,需分焦點(diǎn)在軸和軸上兩種情況討論;(2)解決直線(xiàn)和橢圓的綜合問(wèn)題時(shí)注意:第一步:根據(jù)題意設(shè)直線(xiàn)方程,有的題設(shè)條件已知點(diǎn),而斜率未知;有的題設(shè)條件已知斜率,點(diǎn)不定,可由點(diǎn)斜式設(shè)直線(xiàn)方程.第二步:聯(lián)立方程:把所設(shè)直線(xiàn)方程與橢圓的方程聯(lián)立,消去一個(gè)元,得到一個(gè)一元二次方程.第三步:求解判別式:計(jì)算一元二次方程根.第四步:寫(xiě)出根與系數(shù)的關(guān)系.第五步:根據(jù)題設(shè)條件求解問(wèn)題中結(jié)論.

試題解析:解:(1)由題意知

.又雙曲線(xiàn)的焦點(diǎn)坐標(biāo)為, ,

橢圓的方程為.

2)若直線(xiàn)的傾斜角為,則

當(dāng)直線(xiàn)的傾斜角不為時(shí),直線(xiàn)可設(shè)為

,由

設(shè), ,

, ,綜上所述:范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中, 平面, 為線(xiàn)段上一點(diǎn), 的中點(diǎn).

(1)證明:

(2)求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某縣畜牧技術(shù)員張三和李四9年來(lái)一直對(duì)該縣山羊養(yǎng)殖業(yè)的規(guī)模進(jìn)行跟蹤調(diào)查,張三提供了該縣某山羊養(yǎng)殖場(chǎng)年養(yǎng)殖數(shù)量y(單位:萬(wàn)只)與相成年份x(序號(hào))的數(shù)據(jù)表和散點(diǎn)圖(如圖所示),根據(jù)散點(diǎn)圖,發(fā)現(xiàn)y與x有較強(qiáng)的線(xiàn)性相關(guān)關(guān)系,李四提供了該縣山羊養(yǎng)殖場(chǎng)的個(gè)數(shù)z(單位:個(gè))關(guān)于x的回歸方程.

(1)根據(jù)表中的數(shù)據(jù)和所給統(tǒng)計(jì)量,求y關(guān)于x的線(xiàn)性回歸方程(參考統(tǒng)計(jì)量:);

(2)試估計(jì):①該縣第一年養(yǎng)殖山羊多少萬(wàn)只?

②到第幾年,該縣山羊養(yǎng)殖的數(shù)量與第一年相比縮小了?

附:對(duì)于一組數(shù)據(jù),其回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為菱形, 平面, , , 分別是, 的中點(diǎn).

(1)證明: ;

(2)設(shè)為線(xiàn)段上的動(dòng)點(diǎn),若線(xiàn)段長(zhǎng)的最小值為,求二面角的余弦值.

【答案】(1)見(jiàn)解析;(2)

【解析】試題分析:(1)證明線(xiàn)線(xiàn)垂直則需證明線(xiàn)面垂直,根據(jù)題意易得,然后根據(jù)等邊三角形的性質(zhì)可得,因此平面,從而得證(2)先找到EH什么時(shí)候最短,顯然當(dāng)線(xiàn)段長(zhǎng)的最小時(shí), ,在中, , , ,∴,由中, , ,∴.然后建立空間直角坐標(biāo)系,寫(xiě)出兩個(gè)面法向量再根據(jù)向量的夾角公式即可得余弦值

解析:(1)證明:∵四邊形為菱形,

為正三角形.又的中點(diǎn),∴.

,因此.

平面, 平面,∴.

平面, 平面,

平面.又平面,∴.

(2)如圖, 上任意一點(diǎn),連接 .

當(dāng)線(xiàn)段長(zhǎng)的最小時(shí), ,由(1)知,

平面, 平面,故.

中, , , ,

,

中, , ,∴.

由(1)知, , 兩兩垂直,以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,又, 分別是, 的中點(diǎn),

可得, , ,

, ,

所以 .

設(shè)平面的一法向量為,

因此

,則,

因?yàn)?/span>, , ,所以平面

為平面的一法向量.又,

所以 .

易得二面角為銳角,故所求二面角的余弦值為.

型】解答
結(jié)束】
20

【題目】2018湖北七市(州)教研協(xié)作體3月高三聯(lián)考已知橢圓 的左頂點(diǎn)為,上頂點(diǎn)為,直線(xiàn)與直線(xiàn)垂直,垂足為點(diǎn),且點(diǎn)是線(xiàn)段的中點(diǎn).

I)求橢圓的方程;

II)如圖,若直線(xiàn) 與橢圓交于, 兩點(diǎn),點(diǎn)在橢圓上,且四邊形為平行四邊形,求證:四邊形的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在中國(guó)決勝全面建成小康社會(huì)的關(guān)鍵之年,如何更好地保障和改善民生,如何切實(shí)增強(qiáng)政策“獲得感”,成為年全國(guó)兩會(huì)的重要關(guān)切.某地區(qū)為改善民生調(diào)研了甲、乙、丙、丁、戊個(gè)民生項(xiàng)目,得到如下信息:①若該地區(qū)引進(jìn)甲項(xiàng)目,就必須引進(jìn)與之配套的乙項(xiàng)目;②丁、戊兩個(gè)項(xiàng)目與民生密切相關(guān),這兩個(gè)項(xiàng)目至少要引進(jìn)一個(gè);③乙、丙兩個(gè)項(xiàng)目之間有沖突,兩個(gè)項(xiàng)目只能引進(jìn)一個(gè);④丙、丁兩個(gè)項(xiàng)目關(guān)聯(lián)度較高,要么同時(shí)引進(jìn),要么都不引進(jìn);⑤若引進(jìn)項(xiàng)目戊,甲、丁兩個(gè)項(xiàng)目也必須引進(jìn).則該地區(qū)應(yīng)引進(jìn)的項(xiàng)目為( )

A. 甲、乙B. 丙、丁C. 乙、丁D. 甲、丙

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】市場(chǎng)份額又稱(chēng)市場(chǎng)占有率,它在很大程度上反映了企業(yè)的競(jìng)爭(zhēng)地位和盈利能力,是企業(yè)非常重視的一個(gè)指標(biāo).近年來(lái),服務(wù)機(jī)器人與工業(yè)機(jī)器人以迅猛的增速占領(lǐng)了中國(guó)機(jī)器人領(lǐng)域龐大的市場(chǎng)份額,隨著“一帶一路”的積極推動(dòng),包括機(jī)器人產(chǎn)業(yè)在內(nèi)的眾多行業(yè)得到了更廣闊的的發(fā)展空間,某市場(chǎng)研究人員為了了解某機(jī)器人制造企業(yè)的經(jīng)營(yíng)狀況,對(duì)該機(jī)器人制造企業(yè)2017年1月至6月的市場(chǎng)份額進(jìn)行了調(diào)查,得到如下資料:

月份

1

2

3

4

5

6

市場(chǎng)份額

11

163

16

15

20

21

請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線(xiàn)性回歸方程,并預(yù)測(cè)該企業(yè)2017年7月份的市場(chǎng)份額.

如圖是該機(jī)器人制造企業(yè)記錄的2017年6月1日至6月30日之間的產(chǎn)品銷(xiāo)售頻數(shù)(單位:天)統(tǒng)計(jì)圖.設(shè)銷(xiāo)售產(chǎn)品數(shù)量為,經(jīng)統(tǒng)計(jì),當(dāng)時(shí),企業(yè)每天虧損約為200萬(wàn)元;

當(dāng)時(shí),企業(yè)平均每天收入約為400萬(wàn)元;

當(dāng)時(shí),企業(yè)平均每天收入約為700萬(wàn)元.

①設(shè)該企業(yè)在六月份每天收入為,求的數(shù)學(xué)期望;

②如果將頻率視為概率,求該企業(yè)在未來(lái)連續(xù)三天總收入不低于1200萬(wàn)元的概率.

附:回歸直線(xiàn)的方程是,其中

, ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在固定壓力差(壓力差為常數(shù))下,當(dāng)氣體通過(guò)圓形管道時(shí),其流量速率,(單位:)與管道半徑r(單位:cm)的四次方成正比.

1)寫(xiě)出氣體流量速率,關(guān)于管道半徑r的函數(shù)解析式;

2)若氣體在半徑為3cm的管道中,流量速率為,求該氣體通過(guò)半徑為r的管道時(shí),其流量速率v的表達(dá)式;

3)已知(2)中的氣體通過(guò)的管道半徑為5cm,計(jì)算該氣體的流量速率(精確到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解關(guān)于的不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面是邊長(zhǎng)為2的正方形,,且,中點(diǎn).

)求證:平面;  

求二面角的大小;

在線(xiàn)段上是否存在點(diǎn),使得點(diǎn)到平

的距離為?若存在,確定點(diǎn)的位置;

若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案