【題目】某高校大一新生中,來自東部地區(qū)的學(xué)生有2400人、中部地區(qū)學(xué)生有1600人、西部地區(qū)學(xué)生有1000人.從中選取100人作樣本調(diào)研飲食習(xí)慣,為保證調(diào)研結(jié)果相對準(zhǔn)確,下列判斷正確的有( )

①用分層抽樣的方法分別抽取東部地區(qū)學(xué)生48人、中部地區(qū)學(xué)生32人、西部地區(qū)學(xué)生20人;

②用簡單隨機(jī)抽樣的方法從新生中選出100人;

③西部地區(qū)學(xué)生小劉被選中的概率為

④中部地區(qū)學(xué)生小張被選中的概率為

A. ①④ B. ①③ C. ②④ D. ②③

【答案】B

【解析】分析:由題意逐一考查所給的說法是否正確即可.

詳解:逐一考查所給的說法:

①由分層抽樣的概念可知,取東部地區(qū)學(xué)生48人、

中部地區(qū)學(xué)生32人、

西部地區(qū)學(xué)生20,題中的說法正確;

②新生的人數(shù)較多,不適合用簡單隨機(jī)抽樣的方法抽取人數(shù),題中的說法錯(cuò)誤;

③西部地區(qū)學(xué)生小劉被選中的概率為,題中的說法正確;

④中部地區(qū)學(xué)生小張被選中的概率為,題中的說法錯(cuò)誤;

綜上可得,正確的說法是①③.

本題選擇B選項(xiàng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),的導(dǎo)函數(shù)),上的最大值為.

(1)求實(shí)數(shù)的值;

(2)判斷函數(shù)內(nèi)的極值點(diǎn)個(gè)數(shù),并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知焦點(diǎn)在x軸上的橢圓C1的長軸長為8,短半軸為2,拋物線C2的頂點(diǎn)在原點(diǎn)且焦點(diǎn)為橢圓C1的右焦點(diǎn).

(1)求拋物線C2的標(biāo)準(zhǔn)方程;

(2)過(10)的兩條相互垂直的直線與拋物線C2有四個(gè)交點(diǎn),求這四個(gè)點(diǎn)圍成四邊形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】人站成兩排隊(duì)列,前排人,后排.

1)一共有多少種站法;

2)現(xiàn)將甲、乙、丙三人加入隊(duì)列,前排加一人,后排加兩人,其他人保持相對位置不變,求有多少種不同的加入方法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象經(jīng)過點(diǎn),且在點(diǎn)處的切線方程為.

(1)求函數(shù)的解析式;

(2)求函數(shù)的單調(diào)區(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)習(xí)小組在研究性學(xué)習(xí)中,對晝夜溫差大小與綠豆種子一天內(nèi)出芽數(shù)之間的關(guān)系進(jìn)行研究.該小組在4月份記錄了1日至6日每天晝夜最高、最低溫度(如圖1),以及浸泡的100顆綠豆種子當(dāng)天內(nèi)的出芽數(shù)(如圖2).

根據(jù)上述數(shù)據(jù)作出散點(diǎn)圖,可知綠豆種子出芽數(shù) (顆)和溫差 ()具有線性相關(guān)關(guān)系.

(1)求綠豆種子出芽數(shù) (顆)關(guān)于溫差 ()的回歸方程

(2)假如4月1日至7日的日溫差的平均值為11,估計(jì)4月7日浸泡的10000顆綠豆種子一天內(nèi)的出芽數(shù).

附:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

1)求ff1)),ff1));

2)畫出fx)的圖象;

3)若fx=a,問a為何值時(shí),方程沒有根?有一個(gè)根?兩個(gè)根?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與直線的距離為,橢圓的離心率為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)在(1)的條件下,拋物線的焦點(diǎn)與點(diǎn)關(guān)于軸上某點(diǎn)對稱,且拋物線與橢圓在第四象限交于點(diǎn),過點(diǎn)作拋物線的切線,求該切線方程并求該直線與兩坐標(biāo)軸圍成的三角形面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的公差不為0,其前項(xiàng)和為,,且,,成等比數(shù)列.

1)求數(shù)列的通項(xiàng)公式及的最小值;

2)若數(shù)列是等差數(shù)列,且,求的值.

查看答案和解析>>

同步練習(xí)冊答案