如圖,在直三棱柱ABC-A1B1C1中,AB=AC=5,D,E分別為BC,BB1的中點,BB1的中點,四邊形B1BCC1是邊長為6的正方形.
(1)求證:A1B∥平面AC1D;
(2)求證:CE⊥平面AC1D;
(3)求二面角C-AC1-D的余弦值.
(1)證明:連結(jié),與交于O點,連結(jié)OD. 因為O,D分別為和BC的中點, 所以O(shè)D//. 又OD,, 所以. 4分 (2)證明:在直三棱柱中, , 所以. 因為為BC中點, 所以又, 所以. 又 因為四邊形為正方形,D,E分別為BC,的中點, 所以. 所以.所以 8分 (3)解:如圖,以的中點G為原點,建立空間直角坐標系, 則A(0,6,4),E(3,3,0),C(-3,6,0),. 由(Ⅱ)知為平面AC1D的一個法向量. 設(shè)為平面的一個法向量, =(-3,0,-4),CC1=(0,-6,0) 由 令,則. 所以. 從而. 因為二面角為銳角, 所以二面角的余弦值為. 12分 |
科目:高中數(shù)學 來源: 題型:
如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.
(I)求證:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點C到平面B1DP的距離.
查看答案和解析>>
科目:高中數(shù)學 來源:2011年四川省招生統(tǒng)一考試理科數(shù)學 題型:解答題
(本小題共l2分)
如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[來源:]
P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.
(I)求證:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點C到平面B1DP的距離.
查看答案和解析>>
科目:高中數(shù)學 來源:2011年高考試題數(shù)學理(四川卷)解析版 題型:解答題
(本小題共l2分)
如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一
P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.
(I)求證:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點C到平面B1DP的距離.
查看答案和解析>>
科目:高中數(shù)學 來源:四川省高考真題 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一點,P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.
(I)求證:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點C到平面B1DP的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com