長方體ABCD-A1B1C1D1中,∠BAB1 =30°,則異面直線C1D與B1B所成的角是
A.60°B.90°
C.30° D.45°
A
因為BB1//C1C,所以就是異面直線C1D與B1B所成的角, 因為∠BAB1 =30°,所以
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱柱中,側(cè)棱底面,的中點,,.

(1)求證:平面;
(2) 求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱錐A-BCD中,側(cè)面ABD、ACD是全等的直角三角形,AD是公共的斜邊,且AD=,BD=CD=1,另一個側(cè)面是正三角形

(1)求證:AD^BC
(2)求二面角B-AC-D的大小
(3)在直線AC上是否存在一點E,使ED與面BCD成30°角?若存在,確定E的位置;若 
不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,已知直三棱柱ABC–A′B′C′,AC ="AB" =AA,=2,AC,AB,AA′兩兩垂直,  E,F(xiàn),H分別是AC,AB,BC的中點, 
(I)證明:EF⊥AH;   
(II)求平面EFC與平面BB′C′所成夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在邊長為的正方形ABCD中,E、F分別為BC、CD的中點,M、N分別為AB、CF的中點,現(xiàn)沿AE、AF、EF折疊,使B、C、D三點重合,構(gòu)成一個三棱錐.
(I)判別MN與平面AEF的位置關(guān)系,并給出證明;
(II)求多面體E-AFMN的體積.
                 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若a,b是異面直線,且a∥平面α,則b和α的位置關(guān)系是(    ) 
A.平行B.相交
C.b在α內(nèi)D.平行、相交或b在α內(nèi)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在正方體ABCD-A1B1C1D1中,點M、N分別在AB1、BC1上,且AM=AB1,BN=BC1,則下列結(jié)論:①AA1⊥MN;②A1C1// MN;③MN//平面A1B1C1D1;④B1D1⊥MN,其中,
正確命題的個數(shù)是( )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

正方體中,側(cè)面內(nèi)有一動點到直線與直線的距離相等,則動點的軌跡為一段 (  )
A.圓弧B.雙曲線弧C.橢圓弧D.拋物線弧

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

一個圓錐的側(cè)面展開圖是半徑為,圓心角為的扇形,則圓錐的底面圓半徑是             

查看答案和解析>>

同步練習冊答案