【題目】已知函數(shù),

(Ⅰ)若內單調遞減,求實數(shù)的取值范圍;

(Ⅱ)若函數(shù)有兩個極值點分別為,,證明:

【答案】(Ⅰ)(Ⅱ)見證明

【解析】

I)先求得函數(shù)的導數(shù),根據(jù)函數(shù)在上的單調性列不等式,分離常數(shù)后利用構造函數(shù)法求得的取值范圍.II)將極值點代入導函數(shù)列方程組,將所要證明的不等式轉化為證明,利用構造函數(shù)法證得上述不等式成立.

(I)

內單調遞減,

內恒成立,

內恒成立.

,則

∴當時,,即內為增函數(shù);

時,,即內為減函數(shù).

的最大值為,

(Ⅱ)若函數(shù)有兩個極值點分別為,,

內有兩根,

由(I),知

,兩式相減,得

不妨設,

∴要證明,只需證明

即證明,亦即證明

令函數(shù)

,即函數(shù)內單調遞減.

時,有,∴

即不等式成立.

綜上,得

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某工廠為提高生產效率,開展技術創(chuàng)新活動,提出了完成某項生產任務的兩種新的生產方式.為比較兩種生產方式的效率,選取40名工人,將他們隨機分成兩組,每組20人,第一組工人用第一種生產方式,第二組工人用第二種生產方式.根據(jù)工人完成生產任務的工作時間(單位:min)繪制了如下莖葉圖:

(1)根據(jù)莖葉圖判斷哪種生產方式的效率更高?并說明理由;

(2)求40名工人完成生產任務所需時間的中位數(shù),并將完成生產任務所需時間超過和不超過的工人數(shù)填入下面的列聯(lián)表:

超過

不超過

第一種生產方式

第二種生產方式

(3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認為兩種生產方式的效率有差異?

附:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓的右焦點為,過的直線與橢圓交于兩點,已知點的坐標為.

(Ⅰ)當軸垂直時,求點AB的坐標及的值

(Ⅱ)設為坐標原點,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形.謝爾賓斯基三角形是一種分形,由波蘭數(shù)學家謝爾賓斯基1915年提出.具體操作是取一個實心三角形,沿三角形的三邊中點連線,將它分成4個小三角形,去掉中間的那一個小三角形后,對其余3個小三角形重復上述過程逐次得到各個圖形,如圖.

現(xiàn)在上述圖(3)中隨機選取一個點,則此點取自陰影部分的概率為_________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)

某學校用簡單隨機抽樣方法抽取了100名同學,對其日均課外閱讀時間(單位:分鐘)進行調查,結果如下:

t

男同學人數(shù)

7

11

15

12

2

1

女同學人數(shù)

8

9

17

13

3

2

若將日均課外閱讀時間不低于60分鐘的學生稱為“讀書迷”.

(1)將頻率視為概率,估計該校4000名學生中“讀書迷”有多少人?

(2)從已抽取的8名“讀書迷”中隨機抽取4位同學參加讀書日宣傳活動.

(i)求抽取的4位同學中既有男同學又有女同學的概率;

(ii)記抽取的“讀書迷”中男生人數(shù)為,求的分布列和數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班50位學生周考數(shù)學成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:、、、、.

1)求圖中的矩形高的值,并估計這50人周考數(shù)學的平均成績;

2)根據(jù)直方圖求出這50人成績的眾數(shù)和中位數(shù)(精確到0.1);

3)從成績不低于80分的學生中隨機選取2人,該2人中成績不低于90分的人數(shù)記為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,,的中點,點在平面內的射影在線段上.

(1)求證:

(2)若是正三角形,求三棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】兩名老師和五名學生站一排拍照.

1)五名學生必須排在一起共有多少種排法?

2)兩名老師不能相鄰共有多少種排法?

3)兩名老師不能排在兩邊共有多少種排法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓過點,焦距長,過點的直線交橢圓,兩點.

(1)求橢圓的方程;

(2)在軸上是否存在一點,使得為定值.

查看答案和解析>>

同步練習冊答案