【題目】如圖所示,扇形AOB,圓心角AOB等于60°,半徑為2,在弧AB上有一動點P,過P引平行于OB的直線和OA交于點C,設∠AOP=θ,當△POC面積的最大值時θ的值為___________
科目:高中數(shù)學 來源: 題型:
【題目】已知正方體,點, , 分別是線段, 和上的動點,觀察直線與, 與.給出下列結(jié)論:
①對于任意給定的點,存在點,使得;
②對于任意給定的點,存在點,使得;
③對于任意給定的點,存在點,使得;
④對于任意給定的點,存在點,使得.
其中正確結(jié)論的個數(shù)是( ).
A. 個 B. 個 C. 個 D. 個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一緝私艇發(fā)現(xiàn)在方位角45°方向,距離12海里的海面上有一走私船正以10海里/小時的速度沿方位角為105°方向逃竄,若緝私艇的速度為14海里/小時,緝私艇沿方位角45°+α的方向追去,若要在最短的時間內(nèi)追上該走私船,求追擊所需時間和α角的正弦.(注:方位角是指正北方向按順時針方向旋轉(zhuǎn)形成的角,設緝私艇與走私船原來的位置分別為A、C,在B處兩船相遇).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司的廣告費支出x與銷售額y(單位:萬元)之間有下列對應數(shù)據(jù)
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
回歸方程為 =bx+a,其中b= ,a= ﹣b .
(1)畫出散點圖,并判斷廣告費與銷售額是否具有相關關系;
(2)根據(jù)表中提供的數(shù)據(jù),求出y與x的回歸方程 =bx+a;
(3)預測銷售額為115萬元時,大約需要多少萬元廣告費.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖, 是半圓的直徑, 是半圓上除、外的一個動點, 垂直于半圓所在的平面, , , , .
(1)證明:平面平面;
(2)當三棱錐體積最大時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲船在島B的正南A處,AB=10千米.甲船以每小時4千米的速度向北航行,同時,乙船自B出發(fā)以每小時6千米的速度向北偏東60°的方向駛?cè)ィ敿状?/span>A,B之間,且甲、乙兩船相距最近時,它們所航行的時間是( )
A. 分鐘 B. 小時 C. 21.5分鐘 D. 2.15分鐘
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱柱中, 底面,底面為菱形, 為與交點,已知,.
(Ⅰ)求證: 平面;
(Ⅱ)求證: ∥平面;
(Ⅲ)設點在內(nèi)(含邊界),且 ,說明滿足條件的點的軌跡,并求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對某地區(qū)兒童的身高與體重的一組數(shù)據(jù),我們用兩種模型①,②擬合,得到回歸方程分別為, ,作殘差分析,如表:
身高 | 60 | 70 | 80 | 90 | 100 | 110 |
體重 | 6 | 8 | 10 | 14 | 15 | 18 |
0.41 | 0.01 | 1.21 | -0.19 | 0.41 | ||
-0.36 | 0.07 | 0.12 | 1.69 | -0.34 | -1.12 |
(Ⅰ)求表中空格內(nèi)的值;
(Ⅱ)根據(jù)殘差比較模型①,②的擬合效果,決定選擇哪個模型;
(Ⅲ)殘差大于的樣本點被認為是異常數(shù)據(jù),應剔除,剔除后對(Ⅱ)所選擇的模型重新建立回歸方程.
(結(jié)果保留到小數(shù)點后兩位)
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計分別為, .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com