【題目】已知橢圓E: 的左、右焦點分別為F1、F2 , 離心率 ,P為橢圓E上的任意一點(不含長軸端點),且△PF1F2面積的最大值為1.
(Ⅰ)求橢圓E的方程;
(Ⅱ)已知直x﹣y+m=0與橢圓E交于不同的兩點A,B,且線AB的中點不在圓 內(nèi),求m的取值范圍.

【答案】解:(Ⅰ)由 ,得 ,

又a2=b2+c2,且 ,

聯(lián)立解得: ,c=1.

∴橢圓的標(biāo)準(zhǔn)方程為

(Ⅱ)聯(lián)立 ,消去y整理得:3x2+4mx+2m2﹣2=0.

則△=16m2﹣12(2m2﹣2)=8(﹣m2+3)>0,解得

設(shè)A(x1,y1),B(x2,y2),則 ,

,即AB的中點為( ).

又AB的中點不在圓 內(nèi),

,解得:m≤﹣1或m≥1.

綜上可知, 或1


【解析】(Ⅰ)由已知列出關(guān)于a、b、c的方程,聯(lián)立方程求得a、b的值進而求出橢圓的方程。(Ⅱ)聯(lián)立直線與橢圓的方程,利用一元二次方程的根與系數(shù)的關(guān)系求得AB中點的坐標(biāo),再由AB的中點不在圓內(nèi)結(jié)合判別式可求得m的取值范圍。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

根據(jù)兩角和與差的正弦公式,有

------

------

+------

代入

)類比上述推證方法,根據(jù)兩角和與差的余弦公式,證明:

;

)若的三個內(nèi)角滿足,試判斷的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=sin(ωx﹣ )+sin(ωx﹣ ),其中0<ω<3,已知f( )=0.
(Ⅰ)求ω;
(Ⅱ)將函數(shù)y=f(x)的圖象上各點的橫坐標(biāo)伸長為原來的2倍(縱坐標(biāo)不變),再將得到的圖象向左平移 個單位,得到函數(shù)y=g(x)的圖象,求g(x)在[﹣ , ]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a∈R,函數(shù)f(x)=log2 +a).
(1)當(dāng)a=5時,解不等式f(x)>0;
(2)若關(guān)于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一個元素,求a的取值范圍.
(3)設(shè)a>0,若對任意t∈[ ,1],函數(shù)f(x)在區(qū)間[t,t+1]上的最大值與最小值的差不超過1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知直線l1:4x﹣3y+6=0和直線l2:x=﹣1,拋物線y2=4x上一動點P到直線l1和直線l2的距離之和的最小值是( )
A.2
B.3
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知三點A(-1,0)、B(t,2)、C(2,1),t∈R,O為坐標(biāo)原點

(I)若△ABC是∠B為直角的直角三角形,求t的值

(Ⅱ)若四邊形ABCD是平行四邊形的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y=ax2(a>0)的焦點到準(zhǔn)線的距離為 ,且C上的兩點A(x1 , y1),B(x2 , y2)關(guān)于直線y=x+m對稱,并且 ,那么m=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次趣味校園運動會的頒獎儀式上,高一、高二、高三代表隊人數(shù)分別為120人、120人、n人.為了活躍氣氛,大會組委會在頒獎過程中穿插抽獎活動,并用分層抽樣的方法從三個代表隊中共抽取20人在前排就座,其中高二代表隊有6人.

(1)求n的值;

(2)把在前排就座的高二代表隊6人分別記為a,b,c,d,e,f,現(xiàn)隨機從中抽取2人上臺抽獎.求a和b至少有一人上臺抽獎的概率;

(3)抽獎活動的規(guī)則是:代表通過操作按鍵使電腦自動產(chǎn)生兩個[0,1]之間的均勻隨機數(shù)x,y,并按如圖所示的程序框圖執(zhí)行.若電腦顯示中獎,則該代表中獎;若電腦顯示謝謝,則不中獎,求該代表中獎的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品所得利潤分別為(萬元),它們與投入資金(萬元)的關(guān)系有經(jīng)驗公式,,今將150萬元資金投入生產(chǎn)甲、乙兩種產(chǎn)品,并要求對甲、乙兩種產(chǎn)品的投資金額不低于25萬元

(1)設(shè)對乙產(chǎn)品投入資金萬元,求總利潤(萬元)關(guān)于的函數(shù)關(guān)系式及其定義域;

(2)如何分配使用資金,才能使所得總利潤最大?最大利潤為多少?

查看答案和解析>>

同步練習(xí)冊答案