設函數(shù)f(x)=數(shù)學公式x3-x2+ax,g(x)=2x+b,當x=1+數(shù)學公式時,f(x)取得極值.
(Ⅰ)求a的值
(Ⅱ)當x∈[-3,4]時,函數(shù)f(x)與g(x)的圖象有兩個公共點,求b的取值范圍.

解:(I)由題意f'(x)=x2-2x+a,
∵當x=1+時,f(x)取得極值,
∴所以 ,

∴即a=-1
(2)設f(x)=g(x),則 -3x-b=0,b=-3x,
設F(x)=-3x,G(x)=b,F(xiàn)'(x)=x2-2x-3,令F'(x)=x2-2x-3=0解得x=-1或x=3,
∴函數(shù)F(x)在(-3,-1)和(3,4)上是增函數(shù),在(-1,3)上是減函數(shù).
當x=-1時,F(xiàn)(x)有極大值F(-1)=;當x=3時,F(xiàn)(x)有極小值F(3)=-9,
∵函數(shù)f(x)與g(x)的圖象有兩個公共點,F(xiàn)(-3)=-9,F(xiàn)(4)=-
∴函數(shù)F(x)與G(x)的圖象有兩個公共點,結(jié)合圖象可得
∴-或b=-9,

分析:(I)根據(jù)已知中函數(shù)的解析式,求出其導函數(shù)的解析式,利用函數(shù)在極值點的導數(shù)等于0,可求出a的值.(II)設f(x)=g(x),則得 .設 ,G(x)=b,由F'(x)的符號判斷
函數(shù)F(x)的單調(diào)性和單調(diào)區(qū)間,從而求出F(x)的值域,由題意得,函數(shù)F(x)與G(x)的圖象有兩個公共點,
從而得到b的取值范圍.
點評:本題考查函數(shù)在極值點的導數(shù)等于0,利用導數(shù)的符號判斷函數(shù)的單調(diào)性及單調(diào)區(qū)間、極值,求函數(shù)在閉區(qū)間上的值域.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

18、設函數(shù)f(x)=x3-3ax2+3bx的圖象與直線12x+y-1=0相切于點(1,-11).
(Ⅰ)求a,b的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x3+ax2+x+1,a∈R.
(1)若x=1時,函數(shù)f(x)取得極值,求函數(shù)f(x)的圖象在x=-1處的切線方程;
(2)若函數(shù)f(x)在區(qū)間(
12
,1)
內(nèi)不單調(diào),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x3+ax2-a2x+5(a>0)
(1)當函數(shù)f(x)有兩個零點時,求a的值;
(2)若a∈[3,6],當x∈[-4,4]時,求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x3-3x2-9x-1.求:
(Ⅰ)函數(shù)在(1,f(1))處的切線方程;
(Ⅱ)函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x3•cosx+1,若f(a)=5,則f(-a)=
 

查看答案和解析>>

同步練習冊答案