已知點B(0,1),點C(0,—3),直線PB、PC都是圓的切線(P點不在y軸上).
(I)求過點P且焦點在x軸上拋物線的標(biāo)準(zhǔn)方程;
(II)過點(1,0)作直線與(I)中的拋物線相交于M、N兩點,問是否存在定點R,使為常數(shù)?若存在,求出點R的坐標(biāo)與常數(shù);若不存在,請說明理由。
(I)     (II)存在定點R(0,0),相應(yīng)的常數(shù)是 

試題分析:(I)設(shè)直線PC的方程為:
所以PC的方程為  
得P點的坐標(biāo)為(3,1)。
可求得拋物線的標(biāo)準(zhǔn)方程為  
(II)設(shè)直線l的方程為,代入拋物線方程并整理得

   11分
當(dāng)時上式是一個與m無關(guān)的常數(shù)
所以存在定點R(0,0),相應(yīng)的常數(shù)是 
點評:本題主要考查了直線與圓錐曲線的綜合問題.研究直線與圓錐曲線位置關(guān)系的問題,通常有兩種方法:一是轉(zhuǎn)化為研究方程組的解的問題,利用直線方程與圓錐曲線方程所組成的方程組消去一個變量后,將交點問題(包括公共點個數(shù)、與交點坐標(biāo)有關(guān)的問題)轉(zhuǎn)化為一元二次方程根的問題,結(jié)合根與系數(shù)的關(guān)系及判別式解決問題;二是運用數(shù)形結(jié)合的思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是橢圓的左、右焦點,是橢圓上位于第一象限內(nèi)的一點,點也在橢圓上,且滿足是坐標(biāo)原點),,若橢圓的離心率為.
(1)若的面積等于,求橢圓的方程;
(2)設(shè)直線與(1)中的橢圓相交于不同的兩點,已知點的坐標(biāo)為(),點在線段的垂直平分線上,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知焦距為的雙曲線的焦點在x軸上,且過點P .
(Ⅰ)求該雙曲線方程 ;
(Ⅱ)若直線m經(jīng)過該雙曲線的右焦點且斜率為1,求直線m被雙曲線截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

雙曲線=1的兩條漸近線互相垂直,那么該雙曲線的離心率是                

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓與拋物線的焦點均在軸上,的中心及的頂點均為原點,從每條曲線上各取兩點,將其坐標(biāo)記錄于下表:










(Ⅰ)求曲線、的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線過拋物線的焦點,與橢圓交于不同的兩點,當(dāng)時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知分別是雙曲線的左、右焦點,若關(guān)于漸近線的對稱點恰落在以為圓心,為半徑的圓上,則的離心率為( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知動點到點的距離與到直線的距離之比為定值,記的軌跡為

(1)求的方程,并畫出的簡圖;
(2)點是圓上第一象限內(nèi)的任意一點,過作圓的切線交軌跡,兩點.
(i)證明:;
(ii)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線,過右焦點作雙曲線的其中一條漸近線的垂線,垂足為,交另一條漸近線于點,若(其中為坐標(biāo)原點),則雙曲線的離心率為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若雙曲線)的一條漸近線被圓截得的弦長為,則雙曲線的離心率為
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案