【題目】如圖,四棱錐中,,,,,,點(diǎn)中點(diǎn).

(1)求證:;

(2)求直線與平面所成角的正弦值.

【答案】(1)見解析;(2).

【解析】試題分析:(1)第(1)問,一般轉(zhuǎn)化成證明平面. (2)第(2)問,一般利用空間向量線面角的公式求解.

試題解析:(1)證明:取中點(diǎn),連接、

,

,,

平面,平面

,又∵,

.

(2)解:過,

平面,平面

,∵,∴平面.

,則、、兩兩垂直,

、分別為、軸建立如圖所示空間直角坐標(biāo)系,

,,點(diǎn)中點(diǎn),

,,

,

,.

,,

,

∴四邊形是矩形,,

,,

中點(diǎn),

,

,,.

設(shè)平面的法向量,

,得

,得,

,

所成角設(shè)為,其余角就是直線與平面所成角,設(shè)為

∴直線與平面所成角的正弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從2017年1月18日開始,支付寶用戶可以通過“掃‘!帧焙汀皡⑴c螞蟻森林”兩種方式獲得福卡(愛國福、富強(qiáng)福、和諧福、友善福、敬業(yè)福),除夕夜22:18,每一位提前集齊五福的用戶都將獲得一份現(xiàn)金紅包.某高校一個社團(tuán)在年后開學(xué)后隨機(jī)調(diào)查了80位該校在讀大學(xué)生,就除夕夜22:18之前是否集齊五福進(jìn)行了一次調(diào)查(若未參與集五福的活動,則也等同于未集齊五福),得到具體數(shù)據(jù)如下表:

合計(jì)

30

10

40

35

5

40

合計(jì)

65

15

80

(1)根據(jù)如上的列聯(lián)表,能否在犯錯誤的概率不超過0.05的前提下,認(rèn)為“集齊五福與性別有關(guān)”?

(2)計(jì)算這80位大學(xué)生集齊五福的頻率,并據(jù)此估算該校10000名在讀大學(xué)生中集齊五福的人數(shù);

(3)為了解集齊五福的大學(xué)生明年是否愿意繼續(xù)參加集五;顒,該大學(xué)的學(xué)生會從集齊五福的學(xué)生中,選取2位男生和3位女生逐個進(jìn)行采訪,最后再隨機(jī)選取3次采訪記錄放到該大學(xué)的官方網(wǎng)站上,求最后被選取的3次采訪對象中至少有一位男生的概率.

參考公式: .

附表:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年,隨著中國第一款5G手機(jī)投入市場,5G技術(shù)已經(jīng)進(jìn)入高速發(fā)展階段.已知某5G手機(jī)生產(chǎn)廠家通過數(shù)據(jù)分析,得到如下規(guī)律:每生產(chǎn)手機(jī)萬臺,其總成本為,其中固定成本為800萬元,并且每生產(chǎn)1萬臺的生產(chǎn)成本為1000萬元(總成本=固定成本+生產(chǎn)成本),銷售收入萬元滿足

1)將利潤表示為產(chǎn)量萬臺的函數(shù);

2)當(dāng)產(chǎn)量為何值時,公司所獲利潤最大?最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在相同的條件下投籃5輪,每輪甲、乙各投籃10次,投籃命中次數(shù)的情況如圖所示(實(shí)線為甲的折線圖,虛線為乙的折線圖),則以下說法錯誤的是( )

A. 甲投籃命中次數(shù)的眾數(shù)比乙的小

B. 甲投籃命中次數(shù)的平均數(shù)比乙的小

C. 甲投籃命中次數(shù)的中位數(shù)比乙的大

D. 甲投籃命中的成績比乙的穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左頂點(diǎn)為,右焦點(diǎn)為,點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)若直線與橢圓交于兩點(diǎn),直線分別與軸交于點(diǎn),在軸上,是否存在點(diǎn),使得無論非零實(shí)數(shù)怎樣變化,總有為直角?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為常數(shù),且.

(1)若,求函數(shù)的表達(dá)式;

(2)在(1)的條件下,設(shè)函數(shù),若在區(qū)間[-2,2]上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;

(3)是否存在實(shí)數(shù)使得函數(shù)在[-1,4]上的最大值是4?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,圓,直線與拋物線相切于點(diǎn),與圓相切于點(diǎn).

(1)若直線的斜率,求直線和拋物線的方程;

(2)設(shè)為拋物線的焦點(diǎn),設(shè)的面積分別為,,若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過拋物線的焦點(diǎn),,分別是橢圓的左、右焦點(diǎn),且.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線與拋物線相切,且與橢圓交于兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國的鎢礦資源儲量豐富,在全球已經(jīng)探明的鎢礦產(chǎn)資源儲量中占比近,居全球首位。中國又屬贛州鎢礦資源最為豐富,其素有世界鎢都之稱。某科研單位在研發(fā)的鎢合金產(chǎn)品的過程中發(fā)現(xiàn)了一種新合金材料,由大數(shù)據(jù)測得該產(chǎn)品的性能指標(biāo)值與這種新合金材料的含量x(單位:)的關(guān)系為:當(dāng), 的二次函數(shù);當(dāng), .測得部分?jǐn)?shù)據(jù)如表.

x(單位:克)

0

1

2

9

y

0

3

1)求y關(guān)于x的函數(shù)關(guān)系式y=

2)求函數(shù)的最大值

查看答案和解析>>

同步練習(xí)冊答案