【題目】在△ABC中,a、b、c分別是角A、B、C的對邊,S是該三角形的面積,且
(1)求角A的大;
(2)若角A為銳角, ,求邊BC上的中線AD的長.
【答案】(1)(2)
【解析】試題分析:(1)根據(jù)誘導(dǎo)公式,降冪公式,二倍角公式將題中式子化簡為,再根據(jù)為三角形內(nèi)角即可求出;(2)根據(jù)角為銳角和(1)可得,然后根據(jù)三角形的面積公式再結(jié)合條件可求出的值,而求邊上中線的長有兩種思路,法一:由于為邊上的中線,則根據(jù)向量加法的平行四邊形法則可得,然后兩邊平方即可求出也即為的長;法二 :先根據(jù)利用余弦定理求出的值,再在和中兩次利用余弦定理即可求出的值.
試題解析:(1)原式
因
(2)因A為銳角,則
而面積
解法一:又由余弦定理,
又,
即
解法二:作CE平行于AB,并延長AD交CE地E,
在△ACE中,
又
即
這樣
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,直線過點且傾斜角為.
(1)求曲線的直角坐標(biāo)方程和直線的參數(shù)方程;
(2)設(shè)直線與曲線交于, 兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是奇函數(shù)(其中)
(1)求實數(shù)m的值;
(2)已知關(guān)于x的方程在區(qū)間上有實數(shù)解,求實數(shù)k的取值范圍;
(3)當(dāng)時,的值域是,求實數(shù)n與a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ) 求曲線在點處的切線方程;
(Ⅱ) 討論函數(shù)的單調(diào)性;
(Ⅲ) 設(shè),當(dāng)時,若對任意的,存在,使得≥,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:
(1)估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;
(2)能否有99%的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC在內(nèi)角A、B、C的對邊分別為a,b,c,已知a=bcosC+csinB.
(Ⅰ)求B;
(Ⅱ)若b=2,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn,對任意n∈N*總有2Sn=an2+n,且an<an+1.若對任意n∈N*,θ∈R,不等式λ(n+2)恒成立,求實數(shù)λ的最小值( )
A.1B.2C.1D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com