【題目】為了解小學(xué)生的體能情況,抽取了某小學(xué)同年級(jí)部分學(xué)生進(jìn)行跳繩測(cè)試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖所示),已知圖中從左到右前三個(gè)小組的頻率分別時(shí)0.1,0.3,0.4,第一小組的頻數(shù)為5.

(1)求第四小組的頻率?

(2)問參加這次測(cè)試的學(xué)生人數(shù)是多少?

(3)問在這次測(cè)試中,學(xué)生跳繩次數(shù)的中位數(shù)落在第幾小組內(nèi)?

【答案】(1)0.2;(2)50;(3) 第三小組.

【解析】試題分析:(1)由已知中從左到右前三個(gè)小組的頻率分別是0.1,0.3,0.4,結(jié)合四組頻率和為1,即可得到第四小組的頻率;

(2)由已知中第一小組的頻數(shù)為5及第一組頻率為0.1,代入樣本容量=,即可得到參加這次測(cè)試的學(xué)生人數(shù);

(3)由(2)的結(jié)論,我們可以求出第一、第二、第三、第四小組的頻數(shù),再結(jié)合中位數(shù)的定義,即可得到答案.

試題解析:

(1)第四小組的頻率=1-(0.1+0.3+0.4)=0.2

(2)n=第一小組的頻數(shù)÷第一小組的頻率=5÷0.1=50

(3)因?yàn)?.1×50=5,0.3×50=15,0.4×50=20,0.2×50=10,

所以第一、第二、第三、第四小組的頻數(shù)分別為5,15,20,10.

所以學(xué)生跳繩次數(shù)的中位數(shù)落在第三小組.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從裝有個(gè)紅球和個(gè)黑球的口袋內(nèi)任取個(gè)球,那么互斥而不對(duì)立的兩個(gè)事件是( )

A. 至少有一個(gè)黑球與都是黑球 B. 至少有一個(gè)黑球與都是紅球

C. 至少有一個(gè)黑球與至少有個(gè)紅球 D. 恰有個(gè)黑球與恰有個(gè)黑球

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若直線l1:y=x+a和直線l2:y=x+b將圓(x﹣1)2+(y﹣2)2=8分成長(zhǎng)度相等的四段弧,則a2+b2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)M=( ﹣1)( ﹣1)( ﹣1)滿足a+b+c=1(其中a>0,b>0,c>0),則M的取值范圍是(
A.[0,
B.[ ,1)
C.[1,8)
D.[8,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等比數(shù)列{an}中,a2=6,a2+a3=24,在等差數(shù)列{bn}中,b1=a1 , b3=﹣10.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 =(2,1), =(1,7), =(5,1),設(shè)R是直線OP上的一點(diǎn),其中O是坐標(biāo)原點(diǎn).
(1)求使 取得最小值時(shí) 的坐標(biāo)的坐標(biāo);
(2)對(duì)于(1)中的點(diǎn)R,求 夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于數(shù)列,定義,

(1),是否存在,使得?請(qǐng)說(shuō)明理由;

(2) ,求數(shù)列的通項(xiàng)公式;

(3) ,求證:“為等差數(shù)列”的充要條件是“的前4項(xiàng)為等差數(shù)列,為等差數(shù)列”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將圓為參數(shù))上的每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉?lái)的倍,得到曲線

(1)求出的普通方程;

(2)設(shè)直線 的交點(diǎn)為, ,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,求過(guò)線段的中點(diǎn)且與垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C:+=1(ab0)的離心率為,且過(guò)點(diǎn)(1,).

(I)求橢圓C的方程;

(Ⅱ)設(shè)與圓O:x2+y2=相切的直線l交橢圓C與A,B兩點(diǎn),求OAB面積的最大值,及取得最大值時(shí)直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案