【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π,x∈R)在一個(gè)周期內(nèi)的圖象如圖所示,則函數(shù)的解析式為 . 直線y= 與函數(shù)y=f(x)(x∈R)圖象的所有交點(diǎn)的坐標(biāo)為 .
【答案】f(x)=2sin( x+ );( +4kπ, )或( +4kπ, )(k∈Z)
【解析】解:∵f(x)=Asin(ωx+φ)(A>0,ω>0,x∈R),
∴A=2,周期T= = ﹣(﹣ )=4π,
∴ω= .
∴f(x)=2sin( x+φ),
又f(﹣ )=2sin( ×(﹣ )+φ)=0,
∴φ﹣ =kπ,k∈Z,|φ|<π,
∴φ= .
∴f(x)=2sin( x+ ).
當(dāng)f(x)= 時(shí),即2sin( x+ )= ,可得sin( x+ )= ,
∴ x+ = +2kπ或 x+ = +2kπ(k∈Z),可得x= +4kπ或 +4kπ(k∈Z)
由此可得,直線y= 與函數(shù)f(x)圖象的所有交點(diǎn)的坐標(biāo)為:( +4kπ, )或( +4kπ, )(k∈Z).
所以答案是:f(x)=2sin( x+ ),( +4kπ, )或( +4kπ, )(k∈Z).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為25cm的正方形中挖去邊長(zhǎng)為23cm的兩個(gè)等腰直角三角形,現(xiàn)有均勻的粒子散落在正方形中,問粒子落在中間帶形區(qū)域的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】求過(guò)兩點(diǎn)A(1,4)、B(3,2),且圓心在直線y=0上的圓的標(biāo)準(zhǔn)方程.并判斷點(diǎn)M1(2,3),M2(2,4)與圓的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C對(duì)的邊分別為a,b,c,且c=2,C=60°.
(1)求 的值;
(2)若a+b=ab,求△ABC的面積S△ABC .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)若,求函數(shù)的極值;
(2)若, , ,使得(),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知a=2,b=3,cosC= .
(1)求△ABC的面積;
(2)求sin(C﹣A)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),直線的方程為.
(1)若直線是曲線的切線,求證: 對(duì)任意成立;
(2)若對(duì)任意恒成立,求實(shí)數(shù)是應(yīng)滿足的條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是邊長(zhǎng)為的正方形,側(cè)棱底面,且側(cè)棱的長(zhǎng)是,點(diǎn)分別是的中點(diǎn).
(Ⅰ)證明: 平面;
(Ⅱ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是梯形, , , , ,側(cè)面底面.
(1)求證:平面平面;
(2)若與底面所成角為,求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com