【題目】某工廠甲、乙、丙三個車間生產(chǎn)了同一種產(chǎn)品,數(shù)量分別為120件,80件,60件.為了解它們的產(chǎn)品質量是否存在顯著差異,用分層抽樣方法抽取了一個容量為n的樣本進行調(diào)查,其中從丙車間的產(chǎn)品中抽取了3件,則n=( )
A.9
B.10
C.12
D.13
【答案】D
【解析】解:∵甲、乙、丙三個車間生產(chǎn)的產(chǎn)品件數(shù)分別是120,80,60,
∴甲、乙、丙三個車間生產(chǎn)的產(chǎn)品數(shù)量的比依次為6:4:3,
丙車間生產(chǎn)產(chǎn)品所占的比例 ,
因為樣本中丙車間生產(chǎn)產(chǎn)品有3件,占總產(chǎn)品的 ,
所以樣本容量n=3÷ =13.
故選D.
【考點精析】掌握分層抽樣是解答本題的根本,需要知道先將總體中的所有單位按照某種特征或標志(性別、年齡等)劃分成若干類型或層次,然后再在各個類型或層次中采用簡單隨機抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構成總體的樣本.
科目:高中數(shù)學 來源: 題型:
【題目】在以下關于向量的命題中,不正確的是( )
A.若向量 ,向量 (xy≠0),則
B.若四邊形ABCD為菱形,則
C.點G是△ABC的重心,則
D.△ABC中, 和 的夾角等于A
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中, 平面PCD,平面PAD平面ABCD,CD⊥AD,△APD為等腰直角三角形, .
(1)證明:平面PAB⊥平面PCD;
(2)若三棱錐B﹣PAD的體積為 ,求平面PAD與平面PBC所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =(m,cos2x), =(sin2x,n),設函數(shù)f(x)= ,且y=f(x)的圖象過點( , )和點( ,﹣2).
(1)求m,n的值;
(2)將y=f(x)的圖象向左平移φ(0<φ<π)個單位后得到函數(shù)y=g(x)的圖象.若y=g(x)的圖象上各最高點到點(0,3)的距離的最小值為1,求y=g(x)的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學為了解學生數(shù)學課程的學習情況,在3000名學生中隨機抽取200名,并統(tǒng)計這200名學生的某次數(shù)學考試成績,得到了樣本的頻率分布直方圖(如圖).根據(jù)頻率分布直方圖推測,這3000名學生在該次數(shù)學考試中成績小于60分的學生數(shù)是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】計算下列幾個式子,結果為 的序號是 . ①tan25°+tan35° tan25°tan35°,
② ,
③2(sin35°cos25°+sin55°cos65°),
④ .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知 ,其中a>0,a≠1.
(Ⅰ)若f(x)在(﹣∞,+∞)上是單調(diào)函數(shù),求實數(shù)a,b的取值范圍;
(Ⅱ)當a=2時,函數(shù)f(x)在(﹣∞,+∞)上只有一個零點,求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直角梯形ABCD中,BC⊥DC , AE⊥DC , M , N分別是AD , BE的中點,將三角形ADE沿AE折起,則下列說法正確的是(填序號).
①不論D折至何位置(不在平面ABC內(nèi)),都有MN∥平面DEC;②不論D折至何位置,都有MN⊥AE;③不論D折至何位置(不在平面ABC內(nèi)),都有MN∥AB;④在折起過程中,一定存在某個位置,使EC⊥AD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com