【題目】已知O為坐標原點,F(xiàn)是橢圓C: =1(a>b>0)的左焦點,A,B分別為C的左,右頂點.P為C上一點,且PF⊥x軸,過點A的直線l與線段PF交于點M,與y軸交于點E.若直線BM經(jīng)過OE的中點,則C的離心率為(  )
A.
B.
C.
D.

【答案】A
【解析】解:由題意可設F(﹣c,0),A(﹣a,0),B(a,0),令x=﹣c,代入橢圓方程可得y=±b ,可得P(﹣c, ),
設直線AE的方程為y=k(x+a),
令x=﹣c,可得M(﹣c,k(a﹣c)),令x=0,可得E(0,ka),
設OE的中點為H,可得H(0, ),
由B,H,M三點共線,可得kBH=kBM
即為 = ,化簡可得 = ,即為a=3c,可得e= =
故選:A.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某校高一年級某次數(shù)學競賽隨機抽取100名學生的成績,分組為[50,60),[60,70),[70,80),[80,90),[90,100],統(tǒng)計后得到頻率分布直方圖如圖所示:

(1)試估計這組樣本數(shù)據(jù)的眾數(shù)和中位數(shù)(結(jié)果精確到0.1);

(2)年級決定在成績[70,100]中用分層抽樣抽取6人組成一個調(diào)研小組,對高一年級學生課外學習數(shù)學的情況做一個調(diào)查,則在[70,80),[80,90),[90,100]這三組分別抽取了多少人?

(3)現(xiàn)在要從(2)中抽取的6人中選出正副2個小組長,求成績在[80,90)中至少有1人當選為正、副小組長的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣2)ex+a(x﹣1)2
(1)討論f(x)的單調(diào)性;
(2)若f(x)有兩個零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點P0-2),橢圓E 的離心率為,F是橢圓E的右焦點,直線PF的斜率為2,O為坐標原點.

1)求橢圓E的方程;

2)直線l被圓Ox2+y2=3截得的弦長為3,且與橢圓E交于AB兩點,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】經(jīng)過點P(3,2),且在兩坐標軸上的截距相等的直線方程為(寫出一般式)___

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面使用類比推理正確的是(  )

A. a(bc)abac類比推出“cos(αβ)cosαcosβ

B. 3a3b,則ab類比推出acbc,則ab

C. 平面中垂直于同一直線的兩直線平行類比推出空間中垂直于同一平面的兩平面平行

D. 等差數(shù)列{an}中,若a100,則a1a2ana1a2a19n(n19,nN*)”類比推出在等比數(shù)列{bn}中,若b91,則有b1b2bnb1b2b17n(n17,nN*)”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}中,a1=3,an1+2(nN*).

()計算a2,a3,a4的值;

()根據(jù)計算結(jié)果猜想{an}的通項公式,并用數(shù)學歸納法加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)xax2b·ln x,曲線yf(x)P(1,0),且在P點處的切線斜率為2.

(1)a,b的值;

(2)證明:f(x)≤2x2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,角對的邊分別為,已知.

)若,求的取值范圍;

)若,求面積的最大值.

查看答案和解析>>

同步練習冊答案