【題目】已知數(shù)列{an}中,a1=3,an1+2(nN*).

()計算a2,a3,a4的值;

()根據(jù)計算結果猜想{an}的通項公式,并用數(shù)學歸納法加以證明.

【答案】(Ⅰ)a2=2+a3=2+,a4=4.(Ⅱ)答案見解析.

【解析】試題分析()利用,代入計算,可得結論;()()根據(jù)前四項的公共規(guī)律,猜想,然后利用歸納法進行證明,檢驗時等式成立,假設時命題成立,證明時命題也成立即可.

試題解析:()a1=3,an1+2(nN*)可得a2=2+,a3=2+,

a4=2+=4.

()()猜想:an=2+,nN*.

以下用數(shù)學歸納法證明:

(1)n=1時,左邊a1=3,右邊2+1=3,符合結論;

(2)假設當nk(k≥2,kN*)時,結論成立,即ak=2+,

那么ak1+2

+2

+2=+2,

所以當nk+1時,猜想也成立,

根據(jù)(1)(2),可知猜想對于任意nN*都成立.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某幾何體的三視圖如圖所示,則該幾何體的體積為( )

A. 64 B. 32 C. 96 D. 48

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】等差數(shù)列{an}中,a3+a4=4,a5+a7=6.
(1)求{an}的通項公式;
(2)設bn=[an],求數(shù)列{bn}的前10項和,其中[x]表示不超過x的最大整數(shù),如[0.9]=0,[2.6]=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知O為坐標原點,F(xiàn)是橢圓C: =1(a>b>0)的左焦點,A,B分別為C的左,右頂點.P為C上一點,且PF⊥x軸,過點A的直線l與線段PF交于點M,與y軸交于點E.若直線BM經(jīng)過OE的中點,則C的離心率為(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)f(x)=x2+bx+c,若對任意的x1,x2∈[-1,1],有|f(x1)-f(x2)|≤6,則b的取值范圍是( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C:y2=2x的焦點為F,平行于x軸的兩條直線l1 , l2分別交C于A,B兩點,交C的準線于P,Q兩點.
(1)若F在線段AB上,R是PQ的中點,證明AR∥FQ;
(2)若△PQF的面積是△ABF的面積的兩倍,求AB中點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中a為常數(shù)).

(1)當a=1時,求fx)在上的值域;

(2)若當x∈[0,1]時,不等式恒成立,求實數(shù)a的取值范圍;

(3)設,是否存在正數(shù)a,使得對于區(qū)間上的任意三個實數(shù)m,np,都存在以fgm)),fgn)),fgp))為邊長的三角形?若存在,試求出這樣的a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 的零點, 圖像的對稱軸,且 單調,則 的最大值為( 。
A.11
B.9
C.7
D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.

(1)求證:DC⊥平面PAC;
(2)求證:平面PAB⊥平面PAC;
(3)設點E為AB的中點,在棱PB上是否存在點F,使得PA∥平面CEF?說明理由.

查看答案和解析>>

同步練習冊答案