【題目】已知對任意平面向量 =(x,y),把 繞其起點沿逆時針方向旋轉(zhuǎn)θ角得到的向量 =(xcosθ﹣ysinθ,xsinθ+ycosθ),叫做把點B繞點A逆時針方向旋轉(zhuǎn)θ得到點P.
(1)已知平面內(nèi)點A(2,3),點B(2+2 ,1).把點B繞點A逆時針方向旋轉(zhuǎn) 角得到點P,求點P的坐標.
(2)設平面內(nèi)曲線C上的每一點繞坐標原點沿順時針方向旋轉(zhuǎn) 后得到的點的軌跡方程是曲線y= ,求原來曲線C的方程.

【答案】
(1)解:∵A(2,3), ,∴ ,

設點P的坐標為P(x,y),則

繞點A逆時針方向旋轉(zhuǎn) 角得到: =(4,0)

∴(x﹣2,y﹣3)=(4,0)即 ,

即P(6,3)


(2)解:設旋轉(zhuǎn)前曲線C上的點為(x,y),旋轉(zhuǎn)后得到的曲線 上的點為(x',y'),則 解得:

代入 得x'y'=1即y2﹣x2=2


【解析】(1)求出 ,設點P的坐標為P(x,y),求出 , 繞點A逆時針方向旋轉(zhuǎn) 角得到: ,列出方程求解即可.(2)設旋轉(zhuǎn)前曲線C上的點為(x,y),旋轉(zhuǎn)后得到的曲線 上的點為(x',y'),通過 整合求解即可.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設離心率為 的橢圓 的左、右焦點為 , PE上一點, , 內(nèi)切圓的半徑為 .

(1)E的方程;

(2)矩形ABCD的兩頂點CD在直線,A、B在橢圓E,若矩形ABCD的周長為 , 求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設Ox、Oy是平面內(nèi)相交成45°角的兩條數(shù)軸, 、 分別是x軸、y軸正方向同向的單位向量,若向量 =x +y ,則把有序數(shù)對(x,y)叫做向量 在坐標系xOy中的坐標,在此坐標系下,假設 =(﹣2,2 ), =(2,0), =(5,﹣3 ),則下列命題不正確的是(
A. =(1,0)
B.| |=2
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形, , 平面, , , , 中點.

I)求證:直線平面

II)求證:直線平面

III)在上是否存在一點,使得二面角的大小為,若存在,確定的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若將函數(shù)y=cos 2x的圖象向左平移 個單位長度,則平移后圖象的對稱軸為(
A.x= (k∈Z)
B.x= + (k∈Z)
C.x= (k∈Z)
D.x= + (k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在(0, )上的函數(shù)f(x),f′(x)是它的導函數(shù),且恒有f(x)<f′(x)tanx成立,則( )
A.f( )> f(
B.f(1)<2f( )sin1
C.f( )>f(
D. f( )<f(

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,以A為圓心,AD為半徑的圓交AC,ABME.CE的延長線交⊙AF,CM=2,AB=4.

(1)求⊙A的半徑;

(2)求CE的長和△AFC的面積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若存在實常數(shù),使得函數(shù)對其定義域上的任意實數(shù)分別滿足: ,則稱直線隔離直線.已知, 為自然對數(shù)的底數(shù))

1)求的極值;

2)函數(shù)是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知p: ,q:x2﹣2x+1﹣m2≤0(m>0).若¬p是¬q的充分不必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案