f(x)=|x-3|+|x|+|x-5|+|x+7|+|x+4|,求此函數(shù)的值域.
考點(diǎn):函數(shù)的值域
專題:分類法
分析:對(duì)自變量x取值進(jìn)行討論,去絕對(duì)值,再求值域.
解答: 解:f(x)=
-5x-3 (x≤-7)
-3x+11 (-7<x≤-4)
-x+19 (-4<x≤0)
x+19 (0<x≤3)
3x+13 (3<x≤5)
5x+3 (x>5)
,∵f(x)在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增,
∴f(x)≥19,即函數(shù)的值域?yàn)閇19,+∞).
故答案為:[19,+∞).
點(diǎn)評(píng):函數(shù)的圖象是連續(xù)不斷的,所以在后面不需要在每一段上求出y的范圍,再求并集,直接根據(jù)單調(diào)性求就行.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知定點(diǎn)F1(-2,0),F(xiàn)2(2,0),動(dòng)點(diǎn)N滿足|
ON
|=1(O為坐標(biāo)原點(diǎn)),
F1M
=
2NM
MP
MF2
(λ∈R),
F1M
PN
=0,求點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

焦點(diǎn)在y軸上的雙曲線的一條漸近線方程是x-
3
y=0,此雙曲線的離心率為( 。
A、
3
B、
2
3
3
C、2
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A(2,0),將向量
OA
繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)
π
3
后得向量
OB
,若向量
a
滿足|
a
-
OA
-
OB
|=1
,則|
a
|
的最大值是( 。
A、2
3
-1
B、2
3
+1
C、3
D、
6
+
2
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且a1=2,a3=6.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{
1
Sn
}
的前n項(xiàng)和為Tn,求T2013的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=f(x)經(jīng)過點(diǎn)(1,20),其導(dǎo)函數(shù)f′(x)=4x-22.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,Sn)(n∈N+)均在函數(shù)y=f(x)的圖象上.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{|an|}前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB是的⊙O直徑,CB與⊙O相切于B,E為線段CB上一點(diǎn),連接AC、AE分別交⊙O于D、G兩點(diǎn),連接DG交CB于點(diǎn)F.
(Ⅰ)求證:C、D、G、E四點(diǎn)共圓.
(Ⅱ)若F為EB的三等分點(diǎn)且靠近E,EG=1,GA=3,求線段CE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

請(qǐng)?jiān)O(shè)計(jì)算法框圖,要求輸入自變量x的值,輸出函數(shù)f(x)=
-x+1,x≥0
x+3,x<0
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax-2-2(a>0且a≠1)的圖象恒過定點(diǎn)A(m,n),則不等式組
mx+ny+2≥0
8x-y-4≤0
x≥0,y≥0
所表示的平面區(qū)域的面積是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案