【題目】如圖,四棱錐中,是等邊三角形,底面是直角梯形,,,,,,分別是,的中點(diǎn).
(1)①求證:平面;
②求線(xiàn)段的長(zhǎng)度;
(2)若,求直線(xiàn)與平面所成角的正弦值.
【答案】(1)①詳見(jiàn)解析;②;(2).
【解析】
(1)①通過(guò)證明面面,再利用面面平行的性質(zhì)得證;②由余弦定理求解即可;
(2)法一:作出圖象,設(shè)到平面的距離設(shè)為,利用等體積法求出,進(jìn)而可得直線(xiàn)與平面所成角的正弦值為.
法二:利用面面垂直的判定定理可證出平面平面,建立空間直角坐標(biāo)系,通過(guò)空間向量法,求出直線(xiàn)與平面所成角的正弦值.
解:(1)①證明:取中點(diǎn),
則,,
∵,,
∴平面平面,
∴平面.
②由①可知:
,,,
由余弦定理得到:
.
(2)解法一:∵,,
∴,
又,,
∴平面,
∴平面平面,
延長(zhǎng)到,使得,
則面,,
∵,,
∴,
∵是的中點(diǎn),.
到平面的距離設(shè)為,
體積法求得:
,
∴,
∴.
解法二:∵,,
∴,
又,,
∴平面,
∴平面平面,
以為坐標(biāo)原點(diǎn)建立空間坐標(biāo)系,得到
,,,
延長(zhǎng)到,使得,
則面,,
則,,
∴,由于,,
則法向量,
∴直線(xiàn)與平面所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在極坐標(biāo)系中,O為極點(diǎn),點(diǎn)在曲線(xiàn)上,直線(xiàn)l過(guò)點(diǎn)且與垂直,垂足為P.
(1)當(dāng)時(shí),求及l的極坐標(biāo)方程;
(2)當(dāng)M在C上運(yùn)動(dòng)且P在線(xiàn)段OM上時(shí),求P點(diǎn)軌跡的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面是菱形,且,其對(duì)角線(xiàn)、交于點(diǎn), 、是棱、上的中點(diǎn).
(1)求證:面面;
(2)若面底面, , , ,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)F到左頂點(diǎn)的距離為3.
(1)求橢圓C的方程;
(2)設(shè)O是坐標(biāo)原點(diǎn),過(guò)點(diǎn)F的直線(xiàn)與橢圓C交于A,B兩點(diǎn)(A,B不在x軸上),若,延長(zhǎng)AO交橢圓與點(diǎn)G,求四邊形AGBE的面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)與拋物線(xiàn)交于P,Q兩點(diǎn),且的面積為16(O為坐標(biāo)原點(diǎn)).
(1)求C的方程.
(2)直線(xiàn)l經(jīng)過(guò)C的焦點(diǎn)F且l不與x軸垂直;l與C交于A,B兩點(diǎn),若線(xiàn)段AB的垂直平分線(xiàn)與x軸交于點(diǎn)D,試問(wèn)在x軸上是否存在點(diǎn)E,使為定值?若存在,求該定值及E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】自湖北武漢爆發(fā)新型冠狀病毒肺炎疫情以來(lái),各地醫(yī)療物資缺乏,各生產(chǎn)企業(yè)紛紛加班加點(diǎn)生產(chǎn),某企業(yè)準(zhǔn)備購(gòu)買(mǎi)三臺(tái)口罩生產(chǎn)設(shè)備,型號(hào)分別為A,B,C,已知這三臺(tái)設(shè)備均使用同一種易耗品,提供設(shè)備的商家規(guī)定:可以在購(gòu)買(mǎi)設(shè)備的同時(shí)購(gòu)買(mǎi)該易耗品,每件易耗品的價(jià)格為100元;也可以在設(shè)備使用過(guò)程中,隨時(shí)單獨(dú)購(gòu)買(mǎi)易耗品,每件易耗品的價(jià)格為200元.為了決策在購(gòu)買(mǎi)設(shè)備時(shí)應(yīng)同時(shí)購(gòu)買(mǎi)的易耗品的件數(shù),該單位調(diào)查了這三種型號(hào)的設(shè)備各60臺(tái),調(diào)查每臺(tái)設(shè)備在一個(gè)月中使用的易耗品的件數(shù),并得到統(tǒng)計(jì)表如下所示.
每臺(tái)設(shè)備一個(gè)月中使用的易耗品的件數(shù) | 6 | 7 | 8 | |
頻數(shù) | 型號(hào)A | 30 | 30 | 0 |
型號(hào)B | 20 | 30 | 10 | |
型號(hào)C | 0 | 45 | 15 |
將調(diào)查的每種型號(hào)的設(shè)備的頻率視為概率,各臺(tái)設(shè)備在易耗品的使用上相互獨(dú)立.
(1)求該單位一個(gè)月中A,B,C三臺(tái)設(shè)備使用的易耗品總數(shù)超過(guò)21件(不包括21件)的概率;
(2)以該單位一個(gè)月購(gòu)買(mǎi)易耗品所需總費(fèi)用的期望值為決策依據(jù),該單位在購(gòu)買(mǎi)設(shè)備時(shí)應(yīng)同時(shí)購(gòu)買(mǎi)20件還是21件易耗品?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市對(duì)全市高二學(xué)生的期末數(shù)學(xué)測(cè)試成績(jī)統(tǒng)計(jì)顯示,全市10000名學(xué)生的數(shù)學(xué)成績(jī)服從正態(tài)分布.現(xiàn)從甲校高二年級(jí)數(shù)學(xué)成績(jī)?cè)?/span>100分以上(含100分)的共200份試卷中用系統(tǒng)抽樣的方法抽取了20份試卷進(jìn)行分析(試卷編號(hào)為001,002,…,200),成績(jī)統(tǒng)計(jì)如下:
試卷編號(hào) | ||||||||||
試卷得分 | 109 | 118 | 112 | 114 | 126 | 128 | 127 | 124 | 126 | 120 |
試卷編號(hào) | ||||||||||
試卷得分 | 135 | 138 | 135 | 137 | 135 | 139 | 142 | 144 | 148 | 150 |
注:表中試卷編.
(1)寫(xiě)出表中試卷得分為144分的試卷編號(hào)(寫(xiě)出具體數(shù)據(jù)即可);
(2)該市又用系統(tǒng)抽樣的方法從乙校中抽取了20份試卷,將甲乙兩校這40份試卷的得分制作成如圖所示的莖葉圖,在這40份試卷中,從成績(jī)?cè)?/span>140分以上(含140分)的學(xué)生中任意抽取3人,這3人中數(shù)學(xué)成績(jī)?cè)谌信琶?/span>15名的人數(shù)記為,求隨機(jī)變量的分布列和期望.
附:若,則,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某動(dòng)漫影視制作公司長(zhǎng)期堅(jiān)持文化自信,不斷挖掘中華優(yōu)秀傳統(tǒng)文化中的動(dòng)漫題材,創(chuàng)作出一批又一批的優(yōu)秀動(dòng)漫影視作品,獲得市場(chǎng)和廣大觀眾的一致好評(píng),同時(shí)也為公司贏得豐厚的利潤(rùn).該公司2013年至2019年的年利潤(rùn)關(guān)于年份代號(hào)的統(tǒng)計(jì)數(shù)據(jù)如下表(已知該公司的年利潤(rùn)與年份代號(hào)線(xiàn)性相關(guān)):
年份 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
年份代號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
年利潤(rùn) (單位:億元) |
(Ⅰ)求關(guān)于的線(xiàn)性回歸方程,并預(yù)測(cè)該公司2020年(年份代號(hào)記為)的年利潤(rùn);
(Ⅱ)當(dāng)統(tǒng)計(jì)表中某年年利潤(rùn)的實(shí)際值大于由中線(xiàn)性回歸方程計(jì)算出該年利潤(rùn)的估計(jì)值時(shí),稱(chēng)該年為級(jí)利潤(rùn)年,否則稱(chēng)為級(jí)利潤(rùn)年.將中預(yù)測(cè)的該公司2020年的年利潤(rùn)視作該年利潤(rùn)的實(shí)際值,現(xiàn)從2015年至2020年這年中隨機(jī)抽取年,求恰有年為級(jí)利潤(rùn)年的概率.
參考公式:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com