【題目】已知函數(shù),.
(1)討論的單調(diào)性;
(2)若有兩個(gè)極值點(diǎn),,且,證明:.
【答案】(1) 見解析.
(2)證明見解析.
【解析】分析:(1)先求導(dǎo)數(shù),再根據(jù)二次方程 =0根得情況分類討論:當(dāng)時(shí),.∴在上單調(diào)遞減. 當(dāng)時(shí),根據(jù)兩根大小再分類討論對(duì)應(yīng)單調(diào)區(qū)間, (2)先化簡(jiǎn)不等式消m得,再利用導(dǎo)數(shù)研究,單調(diào)性,得其最小值大于-1,即證得結(jié)果.
詳解:(1)由,得
,.
設(shè),.
當(dāng)時(shí),即時(shí),,.
∴在上單調(diào)遞減.
當(dāng)時(shí),即時(shí),
令,得,,.
當(dāng)時(shí),,
在上,,在上,,
∴在上單調(diào)遞增,在上單調(diào)遞減.
綜上,當(dāng)時(shí),在上單調(diào)遞減,
當(dāng)時(shí),在,上單調(diào)遞減,在上單調(diào)遞增,
當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減.
(2)∵有兩個(gè)極值點(diǎn),,且,
∴由(1)知有兩個(gè)不同的零點(diǎn),,
,,且,此時(shí),,
要證明,只要證明.
∵,∴只要證明成立.
∵,∴.
設(shè),,
則,
當(dāng)時(shí),,
∴在上單調(diào)遞增,
∴,即,
∴有兩個(gè)極值點(diǎn),,且時(shí),.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在上的函數(shù)滿足.當(dāng)時(shí),,當(dāng)時(shí),,則f(1)+f(2)+…+f(2015)=( )
A. 333 B. 336 C. 1678 D. 2015
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是()
A. 銳角是第一象限的角,所以第一象限的角都是銳角;
B. 如果向量,則;
C. 在中,記,,則向量與可以作為平面ABC內(nèi)的一組基底;
D. 若,都是單位向量,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且,.
(1)求數(shù)列的通項(xiàng)公式;
(2)已知,記(且),是否存在這樣的常數(shù),使得數(shù)列是常數(shù)列,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由;
(3)若數(shù)列,對(duì)于任意的正整數(shù),均有成立,求證:數(shù)列是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,,為自然對(duì)數(shù)的底數(shù).
(Ⅰ)若函數(shù)在上存在零點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅱ)若函數(shù)在處的切線方程為.求證:對(duì)任意的,總有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為了變廢為寶,節(jié)約資源,新上了一個(gè)從生活垃圾中提煉生物柴油的項(xiàng)目.經(jīng)測(cè)算該項(xiàng)目月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可以近似地表示為:,且每處理一噸生活垃圾,可得到能利用的生物柴油價(jià)值為元,若該項(xiàng)目不獲利,政府將給予補(bǔ)貼.
(1)當(dāng)時(shí),判斷該項(xiàng)目能否獲利?如果獲利,求出最大利潤(rùn);如果不獲利,則政府每月至少需要補(bǔ)貼多少元才能使該項(xiàng)目不虧損?
(2)該項(xiàng)目每月處理量為多少噸時(shí),才能使每噸的平均處理成本最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在直角坐標(biāo)系中,點(diǎn)到拋物線的準(zhǔn)線的距離為.點(diǎn)是上的定點(diǎn),,是上的兩動(dòng)點(diǎn),且線段的中點(diǎn)在直線上.
(Ⅰ)求曲線的方程及的值;
(Ⅱ)記,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓(為參數(shù))與軸正半軸,軸正半軸的交點(diǎn)分別為,動(dòng)點(diǎn)是橢圓上任一點(diǎn),則面積的最大值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)為正整數(shù),集合(),對(duì)于集合中的任意元素和,記.
(1)當(dāng)時(shí),若,,求和的值;
(2)當(dāng)時(shí),設(shè)是的子集,且滿足:對(duì)于中的任意元素、,當(dāng)、相同時(shí),是奇數(shù),當(dāng)、不同時(shí),是偶數(shù),求集合中元素個(gè)數(shù)的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com