【題目】函數(shù)fx,若關(guān)于x的方程f2x)﹣afx+aa20有四個不等的實數(shù)根,則a的取值范圍是(

A.B.(﹣,﹣1)∪[1+∞

C.(﹣,﹣1)∪{1}D.(﹣1,0)∪{1}

【答案】D

【解析】

利用的導(dǎo)函數(shù)判斷出的單調(diào)區(qū)間,由此畫出的大致圖像,令,對的取值進行分類討論,結(jié)合的圖像以及方程有四個不相等的實數(shù)根列不等式,解不等式求得的取值范圍.

當(dāng)x≥0時,

所以當(dāng)0x1時,fx)>0fx)單調(diào)遞增;當(dāng)x1時,fx)<0,fx)單調(diào)遞減,

f0)=0,當(dāng)x→+∞時,fx→0,當(dāng)x0時,fx)單調(diào)遞減,所以fx)的圖象如圖所示:

tfx),則由上圖可知當(dāng)t01時,方程tfx)有兩個實根;

當(dāng)t∈(0,1)時,方程tfx)有3個實數(shù)根;

當(dāng)t∈(﹣,0)∪(1,+∞)時,方程tfx)有一個實數(shù)根,

所以關(guān)于x的方程f2x)﹣afx+aa20有四個不等的實數(shù)根

等價于關(guān)于t的方程t2at+aa20有兩個實數(shù)根t10,t21t1∈(0,1),t2∈(﹣,0)∪(1,+∞),

當(dāng)t10,t21時,a1,

當(dāng)t1∈(01),t2∈(﹣,0)∪(1,+∞)時,(02a×0+aa2)(12a×1+aa2)<0,解得﹣1a0,

綜上所述,a∈(﹣1,0)∪{1}.

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)處的切線方程為,求實數(shù),的值;

(2)若函數(shù)兩處取得極值,求實數(shù)的取值范圍;

(3)在(2)的條件下,若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù),函數(shù).

(1)當(dāng)時,求函數(shù)的零點個數(shù);

(2)若函數(shù)與函數(shù)的圖象分別位于直線的兩側(cè),求的取值集合;

(3)對于,,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱中, , , 的中點.

(1)證明: 平面;

(2)若,點在平面的射影在上,且側(cè)面的面積為,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù))的圖象在處的切線為為自然對數(shù)的底數(shù))

(1)求的值;

(2)若,且對任意恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=x|xa|aR.

1)當(dāng)f2+f(﹣2)>4時,求a的取值范圍;

2)若a0,x,y∈(﹣,a],不等式fx≤|y+3|+|ya|恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四面體中, 分別是的中點.則下述結(jié)論:

①四面體的體積為;

②異面直線所成角的正弦值為

③四面體外接球的表面積為;

④若用一個與直線垂直,且與四面體的每個面都相交的平面去截該四面體,由此得到一個多邊形截面,則該多邊形截面面積最大值為

其中正確的有_____.(填寫所有正確結(jié)論的編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年1月1日,濟南軌道交通號線試運行,濟南軌道交通集團面向廣大市民開展“參觀體驗,征求意見”活動,市民可以通過濟南地鐵APP搶票,小陳搶到了三張體驗票,準(zhǔn)備從四位朋友小王,小張,小劉,小李中隨機選擇兩位與自己一起去參加體驗活動,則小王被選中的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)XN(12),其正態(tài)分布密度曲線如圖所示,P(X≥3)=0.0228,那么向正方形OABC中隨機投擲10000個點,則落入陰影部分的點的個數(shù)的估計值為(  )

(附:隨機變量ξ服從正態(tài)分布N(μ,σ2),則P(μσξμσ)=68.26%,P(μ-2σξμ+2σ)=95.44%)

A. 6038 B. 6587 C. 7028 D. 7539

查看答案和解析>>

同步練習(xí)冊答案