【題目】已知函數(shù).

(1)求曲線在點(diǎn)處的切線方程;

(2)求函數(shù)的零點(diǎn)和極值;

(3)若對任意,都有成立,求實(shí)數(shù)的最小值.

【答案】(1);(2)零點(diǎn),極小值;(3)1.

【解析】分析:(1)求出導(dǎo)函數(shù),切線切線方程為,化簡即可;

(2)由得極值點(diǎn),討論極值點(diǎn)兩邊的正負(fù),得極值;

(3)求出上的最小值和最大值,由最大值-最小值求得,可結(jié)合要求的最小值,討論的單調(diào)性及最值.

詳解:(1)因?yàn)?/span>,所以

因?yàn)?/span>,所以曲線處的切線方程為.

(2)令,解得

所以的零點(diǎn)為.

解得,

的情況如下:

2

0

+

所以函數(shù)時(shí),取得極小值.

(3)法一:

當(dāng)時(shí),.

當(dāng)時(shí),.

,由(2)可知的最小值為的最大值為,

所以“對任意,有恒成立”等價(jià)于

, 解得. 所以的最小值為1.

法二:當(dāng)時(shí),. 當(dāng)時(shí),.

且由(2)可知,的最小值為

,令,則

,不符合要求,

所以. 當(dāng)時(shí),,,

所以,即滿足要求,

綜上,的最小值為1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市氣象部門根據(jù)2018年各月的每天最高氣溫平均數(shù)據(jù),繪制如下折線圖,那么,下列敘述錯(cuò)誤的是( )

A.各月最高氣溫平均值與最低氣溫平均值總體呈正相關(guān)

B.全年中,2月份的最高氣溫平均值與最低氣溫平均值的差值最大

C.全年中各月最低氣溫平均值不高于10°C的月份有5個(gè)

D.20187月至12月該市每天最高氣溫平均值與最低氣溫平均值呈下降趨勢

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左頂點(diǎn)為,右焦點(diǎn)為,斜率為1的直線與橢圓交于,兩點(diǎn),且,其中為坐標(biāo)原點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)過點(diǎn)且與直線平行的直線與橢圓交于,兩點(diǎn),若點(diǎn)滿足,且與橢圓的另一個(gè)交點(diǎn)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若存在極小值,求實(shí)數(shù)的取值范圍;

(2)設(shè)的極小值點(diǎn),且,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求的普通方程和的直角坐標(biāo)方程;

2)把曲線向下平移個(gè)單位,然后各點(diǎn)橫坐標(biāo)變?yōu)樵瓉淼?/span>倍得到曲線(縱坐標(biāo)不變),設(shè)點(diǎn)是曲線上的一個(gè)動(dòng)點(diǎn),求它到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】波羅尼斯(古希臘數(shù)學(xué)家,的公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個(gè)命題:平面內(nèi)與兩定點(diǎn)距離的比為常數(shù)kk0,且k≠1)的點(diǎn)的軌跡是圓,后人將這個(gè)圓稱為阿波羅尼斯圓.現(xiàn)有橢圓=1ab0),AB為橢圓的長軸端點(diǎn),C,D為橢圓的短軸端點(diǎn),動(dòng)點(diǎn)M滿足=2,△MAB面積的最大值為8,△MCD面積的最小值為1,則橢圓的離心率為( 。

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)求曲線與曲線兩交點(diǎn)所在直線的極坐標(biāo)方程;

(2)若直線的極坐標(biāo)方程為,直線軸的交點(diǎn)為,與曲線相交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰ABC中,ABAC3,DEM,N分別是ABAC的三等分點(diǎn),且1,則tanA__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={1,2,3,4,5,6,7,8,9),在集合A中任取三個(gè)元素,分別作為一個(gè)三位數(shù)的個(gè)位數(shù),十位數(shù)和百位數(shù),記這個(gè)三位數(shù)為a,現(xiàn)將組成a的三個(gè)數(shù)字按從小到大排成的三位數(shù)記為Ia),按從大到小排成的三位數(shù)記為Da)(例如a=219,則Ia)=129,Da)=921),閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,任意輸入一個(gè)a,則輸出b的值為( )

A. 792 B. 693 C. 594 D. 495

查看答案和解析>>

同步練習(xí)冊答案