【題目】如圖,在等腰△ABC中,AB=AC=3,D,E與M,N分別是AB,AC的三等分點(diǎn),且1,則tanA=_____,_____.
【答案】 .
【解析】
設(shè)A(0,b),B(﹣a,0),C(a,0),利用1以及可求得a,b,在△ABC中利用余弦定理求得,從而可得;利用數(shù)量積的定義計(jì)算.
以邊BC所在直線為x軸,以邊BC的中垂線為y軸,建立如圖所示平面直角坐標(biāo)系,
設(shè)A(0,b),B(﹣a,0),C(a,0),且D,E與M,N分別是AB,AC的三等分點(diǎn),
∴D(,),E(,),M( ,),N( ,),
∴(a,),(﹣a,),且 1,
∴﹣a21①,
又AC=3,∴a2+b2=9②,
聯(lián)立①②得,a2,
在△ABC中,由余弦定理得,cosA.
因?yàn)?/span>A為等腰三角形的頂角;且cosA,
∴sinA;
∴tanA;
sin;
∴cosB=cos()=sin;
∴3×2a×cosB=﹣3.
故答案為:(1);(2).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有一個(gè)“引葭赴岸”問題:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,適與岸齊.問水深、葭長各幾何?”其意思為“今有水池1丈見方(即尺),蘆葦生長在水的中央,長出水面的部分為1尺.將蘆葦向池岸牽引,恰巧與水岸齊接(如圖所示).試問水深、蘆葦?shù)拈L度各是多少?假設(shè),現(xiàn)有下述四個(gè)結(jié)論:
①水深為12尺;②蘆葦長為15尺;③;④.
其中所有正確結(jié)論的編號是( )
A.①③B.①③④C.①④D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求曲線在點(diǎn)處的切線方程;
(2)求函數(shù)的零點(diǎn)和極值;
(3)若對任意,都有成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過點(diǎn)的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點(diǎn)。
(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程:
(2)若成等比數(shù)列,求a的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,左、右頂點(diǎn)分別為、,過左焦點(diǎn)的直線交橢圓于、兩點(diǎn)(異于、兩點(diǎn)),當(dāng)直線垂直于軸時(shí),四邊形的面積為6.
(1)求橢圓的方程;
(2)設(shè)直線、的交點(diǎn)為;試問的橫坐標(biāo)是否為定值?若是,求出定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位共有職工2000人,其中男職工1200人,女職工800人為調(diào)查2019年“雙十一”購物節(jié)的消費(fèi)情況,按照性別采用分層抽樣的方法抽取了該單位100人在“雙十一”當(dāng)天網(wǎng)絡(luò)購物的消費(fèi)金額(單位:百元),其頻率分布直方圖如下:
(1)已知抽取的樣本中,有3名女職工的消費(fèi)不低于1000元,現(xiàn)從消費(fèi)不低于1000元的職工中抽取3名職工進(jìn)行購物指導(dǎo),求抽取的3名職工中至少有兩名女職工的概率;
(2)在“雙十一”當(dāng)天網(wǎng)絡(luò)購物消費(fèi)金額不低于600元者稱為“購物狂”,低于600元者稱為“理性購物者”.已知在抽取的樣本中有18名女職工消費(fèi)不低于600元,請完成上圖中的列聯(lián)表,并判斷能否有99%的把握認(rèn)為“是不是購物狂”與性別有關(guān).
附:參考數(shù)據(jù)與公式
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線,例如:四葉草曲線就是其中一種,其方程為.給出下列四個(gè)結(jié)論:
①曲線有四條對稱軸;
②曲線上的點(diǎn)到原點(diǎn)的最大距離為;
③曲線第一象限上任意一點(diǎn)作兩坐標(biāo)軸的垂線與兩坐標(biāo)軸圍成的矩形面積最大值為;
④四葉草面積小于.
其中,所有正確結(jié)論的序號是( )
A.①②B.①③C.①③④D.①②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,分別是的邊,上的一點(diǎn),,將沿折起為,使點(diǎn)位于點(diǎn)的位置,連接,,.
(1)若,分別是,的中點(diǎn),平面與平面的交線為,證明:;
(2)若平面平面,與的面積分別為4和9,,求三棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com