【題目】已知二次函數(shù)f(x)=ax2+(2b﹣1)x+6b﹣a為偶函數(shù),且f(x+1)﹣f(x)=2x+1.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)g(x)=f(x)+λx,求函數(shù)g(x)在[0,1]內(nèi)的最小值.
【答案】
(1)解:∵二次函數(shù)f(x)=ax2+(2b﹣1)x+6b﹣a為偶函數(shù),
∴2b﹣1=0,∴b= ,
∴f(x)=ax2+3﹣a
∵f(x+1)﹣f(x)=2x+1,
∴a(x+1)2+3﹣a﹣(ax2+3﹣a)=2x+1,
∴a=1,
∴f(x)=x2+2;
(2)解:由(1)得g(x)=x2+λx+2,對稱軸x=﹣
①當(dāng)﹣ <0即λ<0時,函數(shù)g(x)在[0,1]內(nèi)的最小值為g(0)=2
②當(dāng)0≤ ≤1,即0≤λ≤2時,函數(shù)g(x)在[0,1]內(nèi)的最小值為g(﹣ )=2﹣
③當(dāng) >1即λ>2時,函數(shù)g(x)在[0,1]內(nèi)的最小值為g(1)=3+λ.
綜上所述,函數(shù)g(x)在[0,1]內(nèi)的最小值為
【解析】(1)利用二次函數(shù)f(x)=ax2+(2b﹣1)x+6b﹣a為偶函數(shù),求出b,利用f(x+1)﹣f(x)=2x+1,求出a,即可求函數(shù)f(x)的解析式;(2)由(1)得g(x)=x2+λx+2,對稱軸x=﹣ ,分類討論求函數(shù)g(x)在[0,1]內(nèi)的最小值.
【考點精析】解答此題的關(guān)鍵在于理解二次函數(shù)的性質(zhì)的相關(guān)知識,掌握當(dāng)時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當(dāng)時,拋物線開口向下,函數(shù)在上遞增,在上遞減.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】機器人(阿法狗)在下圍棋時,令人稱道的算法策略是:每一手棋都能保證在接下來的十幾步后,局面依然是滿意的.這種策略給了我們啟示:每一步相對完美的決策,對最后的勝利都會產(chǎn)生積極的影響.
下面的算法是尋找“”中“比較大的數(shù)”,現(xiàn)輸入正整數(shù)“42,61,80,12,79,18,82,57,31,18“,從左到右依次為,其中最大的數(shù)記為,則 ( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中常數(shù).
(1)若在上單調(diào)遞增,求的取值范圍;
(2)令,將函數(shù)的圖象向左平移個單位,再向上平移1個單位,得到函數(shù)的圖象.區(qū)間滿足:在上至少含有30個零點.在所有滿足上述條件的中,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)為定義在R上的偶函數(shù),當(dāng)x≥0時,有f(x+3)=﹣f(x),且當(dāng)x∈[0,3)時,f(x)=log4(x+1),給出下列命題:
①f(2015)>f(2014);
②函數(shù)f(x)在定義域上是周期為3的函數(shù);
③直線x﹣3y=0與函數(shù)f(x)的圖象有2個交點;
④函數(shù)f(x)的值域為[0,1).
其中不正確的命題個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點M在線段PB上,PD∥平面MAC,PA=PD= ,AB=4.
(1)求證:M為PB的中點;
(2)求二面角B﹣PD﹣A的大;
(3)求直線MC與平面BDP所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C的方程為y2=10x,直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點為極點,以x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程和直線l的普通方程;
(2)設(shè)直線l與曲線C交于A、B兩點,求弦長|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家商場對同一種商品開展促銷活動,對購買該商品的顧客兩家商場的獎勵方案如下:
甲商場:顧客轉(zhuǎn)動如圖所示圓盤,當(dāng)指針指向陰影部分(圖中兩個陰影部分均為扇形,且每個扇形圓心角均為,邊界忽略不計)即為中獎·
乙商場:從裝有2個白球、2個藍球和2個紅球的盒子中一次性摸出1球(這些球除顏色外完全相同),它是紅球的概率是,若從盒子中一次性摸出2球,且摸到的是2個相同顏色的球,即為中獎.
(Ⅰ)求實數(shù)的值;
(Ⅱ)試問:購買該商品的顧客在哪家商場中獎的可能性大?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓關(guān)于直線對稱的圓為.
(1)求圓的方程;
(2)過點作直線與圓交于兩點, 是坐標(biāo)原點,是否存在這樣的直線,使得在平行四邊形中?若存在,求出所有滿足條件的直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】采用系統(tǒng)抽樣方法從960人中抽取32人做問卷調(diào)查,為此將他們隨即編號為1,2…960,分組后在第一組采用簡單隨機抽樣的方法抽到的號碼為5,抽到的32人中,編號落入?yún)^(qū)間[1,450]的人做問卷A,編號落入?yún)^(qū)間[451,750]的人做問卷B,其余的人做問卷C,則抽到的32人中,做問卷C的人數(shù)為( )
A.15
B.10
C.9
D.7
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com