已知拋物線(xiàn)C1的方程為y=ax2(a>0),圓C2的方程為x2+(y+1)2=5,直線(xiàn)l1:y=2x+m(m<0)是C1、C2的公切線(xiàn).F是C1的焦點(diǎn).
(1)求m與a的值;
(2)設(shè)A是C1上的一動(dòng)點(diǎn),以A為切點(diǎn)的C1的切線(xiàn)l交y軸于點(diǎn)B,設(shè),證明:點(diǎn)M在一定直線(xiàn)上.

【答案】分析:(1)利用圓心到直線(xiàn)的距離等于半徑求出m,再利用導(dǎo)函數(shù)與切線(xiàn)的關(guān)系求出a的值即可.
(2)先求出以A為切點(diǎn)的切線(xiàn)l的方程以及點(diǎn)A,B的表達(dá)式,再求出,,利用即可求出點(diǎn)M所在的定直線(xiàn).
解答:解:(1)由已知,圓C2:x2+(y+1)2=5的圓心為C2(0,-1),半徑.(1分)
由題設(shè)圓心到直線(xiàn)l1:y=2x+m的距離.(3分)
,
解得m=-6(m=4舍去).(4分)
設(shè)l1與拋物線(xiàn)的相切點(diǎn)為A(x,y),又y′=2ax,(5分)
,.(6分)
代入直線(xiàn)方程得:,∴
所以m=-6,.(7分)
(2)由(1)知拋物線(xiàn)C1方程為,焦點(diǎn).(8分)
設(shè),由(1)知以A為切點(diǎn)的切線(xiàn)l的方程為.(10分)
令x=0,得切線(xiàn)l交y軸的B點(diǎn)坐標(biāo)為(11分)
所以,,(12分)
(13分)
因?yàn)镕是定點(diǎn),所以點(diǎn)M在定直線(xiàn)上.(14分)
點(diǎn)評(píng):本題是對(duì)圓與橢圓知識(shí)的綜合考查.當(dāng)直線(xiàn)與圓相切時(shí),可以利用圓心到直線(xiàn)的距離等于半徑求解.,也可以把直線(xiàn)與圓的方程聯(lián)立讓對(duì)應(yīng)方程的判別式為0求解.本題用的是第一種.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知拋物線(xiàn)C1的方程為y=ax2(a>0),圓C2的方程為x2+(y+1)2=5,直線(xiàn)l1:y=2x+m(m<0)是C1、C2的公切線(xiàn).F是C1的焦點(diǎn).
(1)求m與a的值;
(2)設(shè)A是C1上的一動(dòng)點(diǎn),以A為切點(diǎn)的C1的切線(xiàn)l交y軸于點(diǎn)B,設(shè)
FM
=
FA
+
FB
,證明:點(diǎn)M在一定直線(xiàn)上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)C1的方程為y=x2,拋物線(xiàn)C2的方程為y=2-x2,C1和C2交于A(yíng),B兩點(diǎn),D是曲線(xiàn)段AOB段上異于A(yíng),B的任意一點(diǎn),直線(xiàn)AD交C2于點(diǎn)E,G為△BDE的重心,過(guò)G作C1的兩條切線(xiàn),切點(diǎn)分別為M,N,求線(xiàn)段MN的長(zhǎng)度的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年廣東省湛江市高考數(shù)學(xué)模擬試卷(理科)(解析版) 題型:解答題

已知拋物線(xiàn)C1的方程為y=ax2(a>0),圓C2的方程為x2+(y+1)2=5,直線(xiàn)l1:y=2x+m(m<0)是C1、C2的公切線(xiàn).F是C1的焦點(diǎn).
(1)求m與a的值;
(2)設(shè)A是C1上的一動(dòng)點(diǎn),以A為切點(diǎn)的C1的切線(xiàn)l交y軸于點(diǎn)B,設(shè),證明:點(diǎn)M在一定直線(xiàn)上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年廣東省湛江市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

已知拋物線(xiàn)C1的方程為y=ax2(a>0),圓C2的方程為x2+(y+1)2=5,直線(xiàn)l1:y=2x+m(m<0)是C1、C2的公切線(xiàn).F是C1的焦點(diǎn).
(1)求m與a的值;
(2)設(shè)A是C1上的一動(dòng)點(diǎn),以A為切點(diǎn)的C1的切線(xiàn)l交y軸于點(diǎn)B,設(shè),證明:點(diǎn)M在一定直線(xiàn)上.

查看答案和解析>>

同步練習(xí)冊(cè)答案