【題目】已知.
(1)當(dāng)函數(shù)在上的最大值為3時(shí),求的值;
(2)在(1)的條件下,若對(duì)任意的,函數(shù), 的圖像與直線有且僅有兩個(gè)不同的交點(diǎn),試確定的值.并求函數(shù)在上的單調(diào)遞減區(qū)間.
【答案】(1);(2).
【解析】
(1)利用輔助角公式化簡(jiǎn),再利用正弦函數(shù)的圖像和性質(zhì)求出在上的最大值,即可得到實(shí)數(shù)的值;
(2)把的值代入中,求出的最小正周期為,根據(jù)函數(shù)在的圖像與直線有且僅有兩個(gè)不同的交點(diǎn),可得的值為,再由正弦函數(shù)的單調(diào)區(qū)間和整體思想求出減區(qū)間,再結(jié)合的范圍求出減區(qū)間。
(1)由已知得,
時(shí),
的最大值為,所以;
綜上:函數(shù)在上的最大值為3時(shí),
(2)當(dāng)時(shí), ,故的最小正周期為,
由于函數(shù)在的圖像與直線有且僅有兩個(gè)不同的交點(diǎn),
故的值為.
又由,可得,
,
∵,
∴函數(shù)在上的單調(diào)遞減區(qū)間為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直三棱柱的側(cè)面是正方形,點(diǎn)是側(cè)面的中心,,是棱的中點(diǎn).
(1)求證:平面;
(2)求證:平面平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四面體中,分別是線段的中點(diǎn),,,,直線與平面所成的角等于.
(Ⅰ)證明:平面平面;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)
圍建一個(gè)面積為360m2的矩形場(chǎng)地,要求矩形場(chǎng)地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對(duì)面的新墻上要留一個(gè)寬度為2m的進(jìn)出口,如圖所示,已知舊墻的維修費(fèi)用為45元/m,新墻的造價(jià)為180元/m,設(shè)利用的舊墻的長(zhǎng)度為x(單位:元)。
(Ⅰ)將y表示為x的函數(shù);
(Ⅱ)試確定x,使修建此矩形場(chǎng)地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】判斷下列命題是全稱量詞命題還是存在量詞命題.
(1)梯形的對(duì)角線相等;
(2)存在一個(gè)四邊形有外接圓
(3)二次函數(shù)的圖象都與x軸相交;
(4)存在一對(duì)實(shí)數(shù)x,y,使成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(1)當(dāng)時(shí),若函數(shù)存在與直線平行的切線,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),,若的最小值是,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左焦點(diǎn)為,短軸的兩個(gè)端點(diǎn)分別為A,B,且滿足:,且橢圓經(jīng)過(guò)點(diǎn)
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過(guò)點(diǎn)M的動(dòng)直線(與X軸不重合)與橢圓C相交于P,Q兩點(diǎn),在X軸上是否存在一定點(diǎn)T,無(wú)論直線如何轉(zhuǎn)動(dòng),點(diǎn)T始終在以PQ為直徑的圓上?若有,求點(diǎn)T的坐標(biāo),若無(wú),說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+(x-1)|x-a|.
(1)若a=-1,解方程f(x)=1;
(2)若函數(shù)f(x)在R上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(3)是否存在實(shí)數(shù)a,使不等式f(x)≥2x-3對(duì)任意x∈R恒成立?若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,PA⊥底面ABCD,AD||BC,AD⊥CD,BC=2,AD=CD=1,M是PB的中點(diǎn).
(1)求證:AM||平面PCD;
(2)求證:平面ACM⊥平面PAB;
(3)若PC與平面ACM所成角為30°,求PA的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com