已知橢圓
的離心率為
,其中左焦點(diǎn)
①求橢圓
的方程
②若直線
與橢圓
交于不同的兩點(diǎn)
,且線段
的中
點(diǎn)
關(guān)于直線
的對稱點(diǎn)在圓
上,求
的值
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知P是橢圓
上的點(diǎn),F(xiàn)
1、F
2分別是橢圓的左、右焦點(diǎn),若
,則
的面積為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
橢圓
的中心、右焦點(diǎn)、右頂點(diǎn)及右準(zhǔn)線與
x軸的交點(diǎn)依次為
O、F、G、H,則
的最大值為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓中心在原點(diǎn),焦點(diǎn)在
軸上,離心率
,過橢圓的右焦點(diǎn)且垂直于長軸的弦長為
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)
為橢圓左頂點(diǎn),
為橢圓上異于
的任意兩點(diǎn),若
,求證:直線
過定點(diǎn)并求出定點(diǎn)坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知中心在原點(diǎn)的橢圓
的一個焦點(diǎn)為
為橢圓上一點(diǎn),
的面積為
(1)求橢圓
的方程;
(2)是否存在平行于
的直線
,使得直線
與橢圓
相交于
兩點(diǎn),且以線段
為有經(jīng)的圓恰好經(jīng)過原點(diǎn)?若存在,求出
的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的右頂點(diǎn)為
,上頂點(diǎn)為
,直線
與橢圓交于不同的兩點(diǎn)
,若
是以
為直徑的圓上的點(diǎn),當(dāng)
變化時(shí),
點(diǎn)的縱坐標(biāo)
的最大值為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)過點(diǎn)
且斜率
為的直線
與橢圓
交于不同的兩點(diǎn)
,是否存在
,使得向量
與
共線?若存在,試求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
( 12分)如圖,橢圓的方程為
,其右焦點(diǎn)為F,把橢圓的長軸分成6等分,過每個等分點(diǎn)作x軸的垂線交橢圓上
半部于點(diǎn)
P1,P2,P3,P4,P5五個點(diǎn),且|P
1F|+|P
2F|+|P
3F|+|P
4F|+|P
5F|=5
.
(1)求橢圓的方程;
(2)設(shè)直線
l過
F點(diǎn)(
l不垂直坐標(biāo)軸),且與橢圓交于
A、B兩點(diǎn),線段
AB的垂直平分線交x軸于點(diǎn)
M(m,0),試求
m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
.(本小題滿分14分)已知
的頂點(diǎn)
,
在橢圓
上,
在直線
上,且
.
(1)當(dāng)
邊通過坐標(biāo)原點(diǎn)
時(shí),求
的長及
的面積;
(2)當(dāng)
,且斜邊
的長最大時(shí),求
所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)
已知橢圓
(a>b>0)的離心率
為
該橢圓上一點(diǎn),
(I)求橢圓的方程.
(II)過點(diǎn)
作直線
與橢圓
相交于
點(diǎn),若以
為直徑的圓經(jīng)原點(diǎn)
,求直線
的方程
查看答案和解析>>