函數(shù)f(x)=Asin(ωx+φ)(其中A>0,|φ|<
π
2
)的部分圖象如圖所示,
(1)求函數(shù)f(x)的解析式.
(2)為了得到g(x)=cos2x的圖象,則只要將f(x)的圖象怎樣進(jìn)行變換.
考點(diǎn):由y=Asin(ωx+φ)的部分圖象確定其解析式,函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,從而求得函數(shù)的解析式.
(2)利用誘導(dǎo)公式可得f(x)=cos2(x-
π
12
),再根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.
解答: 解:(1)由函數(shù)的圖象可得 A=1,由
T
4
=
1
4
ω
=
12
-
π
3
,可得ω=2.
再根據(jù)五點(diǎn)法作圖可得 2×
π
3
+φ=π 求得 φ=
π
3
,
故函數(shù)的解析式為 f(x)=sin(2x+
π
3
)

(2)∵f(x)=sin(2x+
π
3
)=cos(
π
6
-2x)=cos2(x-
π
12
),
故將f(x)的圖象向左平移
π
12
個(gè)單位,即可得到g(x)=cos2x的圖象.
點(diǎn)評(píng):本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,誘導(dǎo)公式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,統(tǒng)一這兩個(gè)三角函數(shù)的名稱,是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

泉州某魚苗養(yǎng)殖戶,由于受養(yǎng)殖技術(shù)水平和環(huán)境等因素的制約,會(huì)出現(xiàn)一些魚苗的死亡,根據(jù)以往經(jīng)驗(yàn),魚苗的死亡數(shù)p(萬條)與月養(yǎng)殖數(shù)x(萬條)之間滿足關(guān)系:P=
x2
6
,(1≤x≤4)
x+
3
x
-
25
12
,(x≥4)
,已知每成活1萬條魚苗可以盈利2萬元,但每死亡1萬條魚苗講虧損1萬元.
(Ⅰ)試將該養(yǎng)殖戶每月養(yǎng)殖魚苗所獲得的利潤(rùn)T(萬元)表示為月養(yǎng)殖量x(萬條的函數(shù));
(Ⅱ)該養(yǎng)殖戶魚苗的月養(yǎng)殖量是多少時(shí)獲得的利潤(rùn)最大,最大利潤(rùn)是多少?(利潤(rùn)=盈利-虧損)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某個(gè)公園有個(gè)池塘,其形狀為直角三角形ABC,∠C=90°,AB=100米,BC=50米.
(1)現(xiàn)在準(zhǔn)備養(yǎng)一批供游客觀賞的魚,分別在AB、BC、CA上取點(diǎn)D、E、F,并且,EF∥AB,EF⊥ED(如圖1),游客要在△DEF內(nèi)喂魚,希望△DEF面積越大越好.設(shè)EF=x(米),用x表示△DEF面積S,并求出S的最大值;
(2)現(xiàn)在準(zhǔn)備新建造一個(gè)走廊,方便游客通行,分別在AB、BC、CA上取點(diǎn)D、E、F,建造正△DEF走廊(不考慮寬度)(如圖2),游客希望△DEF周長(zhǎng)越小越好.設(shè)∠FEC=α,用α表示△DEF的周長(zhǎng)L,并求出L的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,有一塊半橢圓形鋼板,其長(zhǎng)半軸長(zhǎng)為2r,短半軸長(zhǎng)為r,計(jì)劃將此鋼板切割成等腰梯形的形狀,下底AB是半橢圓的短軸,上底CD的端點(diǎn)在橢圓上,記CD=2x,梯形面積為S.
(1)求面積S以x為自變量的函數(shù)式,并寫出其定義域;
(2)求S2的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,斜三棱柱ABC-A1B1C1的側(cè)棱長(zhǎng)為
2
,底面是邊長(zhǎng)為1的等邊三角形,∠A1AB=∠A1AC=45°,E、F分別是BC、A1C1的中點(diǎn).
(Ⅰ)求此棱柱的表面積和體積;
(Ⅱ)求異面直線AA1與EF所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直三棱柱ABC-A1B1C1中,AC=CB=AA1=2,∠ACB=90°,E是BB1的中點(diǎn),D∈AB,∠A1DE=90°.
(1)以C為原點(diǎn)建立坐標(biāo)系求D點(diǎn)的坐標(biāo)
(2)求二面角D-A1C-A的大。
(3)求E到平面 A1CD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,且acosB-bcosA=
3
5
c
(Ⅰ)求
tanA
tanB

(Ⅱ)當(dāng)tan(A-B)=
3
4
時(shí),求sinC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的長(zhǎng)軸長(zhǎng)為2
2
,一個(gè)焦點(diǎn)的坐標(biāo)為(1,0).直線l:y=kx與橢圓C交于A,B兩點(diǎn),點(diǎn)P為橢圓上不同于A,B的任意一點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)l的斜率k=1,P為橢圓的右頂點(diǎn).求△ABP的面積.
(Ⅲ)若直線AP,BP的斜率存在且分別為k1,k2.求k1k2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

{an}為等差數(shù)列,前n項(xiàng)和Sn,若a2,a10是方程x2-3x-5=0的兩根,則a6=
 
;S11=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案