【題目】已知函數(shù) 的圖像與的圖像關(guān)于軸對(duì)稱(chēng),函數(shù),若關(guān)于的不等式恒成立,則實(shí)數(shù)的取值范圍為( )

A. B. C. D.

【答案】C

【解析】f(x)=x32x2+x,f′(x)=3x24x+1,

f′(x)=0,x=x=1,

當(dāng)x(, ),(1,+∞)時(shí),f(x)為增函數(shù),當(dāng)x(,1)時(shí),f(x)為減函數(shù),

不等式h(x)kx0R上恒成立,h(x)kxR上恒成立

作出函數(shù)y=h(x)y=kx的圖象如圖:

設(shè)y=kxy=lnx相切于(x0,lnx0), ,

則切線方程為,代入(0,0)得:lnx0=1,x0=e,

f(x)=x32x2+x,f′(x)=3x24x+1,

可得f′(0)=1,y=h(x)在原點(diǎn)處的切線的斜率為1.

∴實(shí)數(shù)k的取值范圍是.

本題選擇C選項(xiàng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=loga(3﹣ax)(a>0,a≠1)
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的定義域;
(2)是否存在實(shí)數(shù)a,使函數(shù)f(x)在[1,2]遞減,并且最大值為1,若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題P:方程x2+mx+1=0有兩個(gè)不等的實(shí)數(shù)根,命題q:方程4x2+4(m﹣2)x+1=0無(wú)實(shí)數(shù)根.若p∧q為假,若p∨q為真,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直角三角形的兩條直角邊, 為斜邊上一點(diǎn),沿將三角形折成直二面角,此時(shí)二面角的正切值為,則翻折后的長(zhǎng)為( )

A. 2 B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知復(fù)數(shù)z1 , z2滿足|z1|=|z2|=1,|z1﹣z2|= ,則|z1+z2|等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率為,且橢圓過(guò)點(diǎn),記橢圓的左、右頂點(diǎn)分別為,點(diǎn)是橢圓上異于的點(diǎn),直線與直線分別交于點(diǎn).

(1)求橢圓的方程;

(2)過(guò)點(diǎn)作橢圓的切線,記,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】動(dòng)圓M與圓(x﹣1)2+y2=1相外切且與y軸相切,則動(dòng)圓M的圓心的軌跡記C,
(1)求軌跡C的方程;
(2)定點(diǎn)A(3,0)到軌跡C上任意一點(diǎn)的距離|MA|的最小值;
(3)經(jīng)過(guò)定點(diǎn)B(﹣2,1)的直線m,試分析直線m與軌跡C的公共點(diǎn)個(gè)數(shù),并指明相應(yīng)的直線m的斜率k是否存在,若存在求k的取值或取值范圍情況[要有解題過(guò)程,沒(méi)解題方程只有結(jié)論的只得結(jié)論分].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩條不重合的直線和兩個(gè)不重合的平面,若,則下列四個(gè)命題:①若,則;②若,則; ③若,則;④若,則,其中正確命題的個(gè)數(shù)是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將圓x2+y2=1上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉?lái)的2倍,得曲線C.
(1)寫(xiě)出C的參數(shù)方程;
(2)設(shè)直線l:2x+y﹣2=0與C的交點(diǎn)為P1 , P2 , 以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求過(guò)線段P1P2的中點(diǎn)且與l垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案