【題目】已知拋物線頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上,又知此拋物線上一點(diǎn)到焦點(diǎn)的距離為6.

(1)求此拋物線的方程;

(2)若此拋物線方程與直線相交于不同的兩點(diǎn)、,且中點(diǎn)橫坐標(biāo)為2,求的值.

【答案】(1);(2)2.

【解析】試題分析:

(1)由題意設(shè)拋物線方程為,則準(zhǔn)線方程為,解得,即可求解拋物線的方程;

(2)由消去,根據(jù),解得,得到,即可求解的值.

試題解析:

(1)由題意設(shè)拋物線方程為),其準(zhǔn)線方程為,

到焦點(diǎn)的距離等于到其準(zhǔn)線的距離,∴,∴,

∴此拋物線的方程為

(2)由消去

∵直線與拋物線相交于不同兩點(diǎn)、,則有

解得,

,解得(舍去).

∴所求的值為2.

型】解答
結(jié)束】
20

【題目】如圖,在四棱錐中,底面是平行四邊形, ,側(cè)面底面, , , 分別為 的中點(diǎn),點(diǎn)在線段上.

(1)求證: 平面;

(2)如果三棱錐的體積為,求點(diǎn)到面的距離.

【答案】(1)證明見(jiàn)解析;(2)

【解析】試題分析:

(1)在平行四邊形中,得出,進(jìn)而得到,證得底面,得出,進(jìn)而證得平面

(2)由到面的距離為,所以 中點(diǎn),即可求解的值.

試題解析:

證明:(1)在平行四邊形中,因?yàn)?/span>,

所以,由, 分別為, 的中點(diǎn),得,所以

側(cè)面底面,且, 底面

又因?yàn)?/span>底面,所以

又因?yàn)?/span> 平面, 平面

所以平面

解:(2)到面的距離為1,所以 中點(diǎn),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)成就的杰出代表.其中《方田》章給出計(jì)算弧田面積所用的經(jīng)驗(yàn)公式為:弧田面積.弧田,由圓弧和其所對(duì)的弦所圍成.公式中“弦”指圓弧所對(duì)弦長(zhǎng),“矢”等于半徑長(zhǎng)與圓心到弦的距離之差,按照上述經(jīng)驗(yàn)公式計(jì)算所得弧田面積與實(shí)際面積之間存在誤差.現(xiàn)有圓心角為,弦長(zhǎng)等于米的弧田. 按照上述經(jīng)驗(yàn)公式計(jì)算所得弧田面積與實(shí)際面積的誤差為_______平方米.(用“實(shí)際面積減去弧田面積”計(jì)算)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有4個(gè)人參加某娛樂(lè)活動(dòng),該活動(dòng)有甲、乙兩個(gè)游戲可供參加者選擇,為增加趣味性,約定:每個(gè)人通過(guò)擲一枚質(zhì)地均勻的骰子決定自己去參加哪個(gè)游戲,擲出點(diǎn)數(shù)為1或2的人去參加甲游戲,擲出點(diǎn)數(shù)大于2的人去參加乙游戲.

(1) 求出4個(gè)人中恰有2個(gè)人去 參加甲游戲的概率;

(2)求這4個(gè)人中去參加甲游戲人數(shù)大于去參加乙游戲的人數(shù)的概率;

(3)用分別表示這4個(gè)人中去參加甲、乙游戲的人數(shù),記,求隨機(jī)變量的分布列與數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某公園摩天輪的半徑為,圓心距地面的高度為,摩天輪做勻速轉(zhuǎn)動(dòng),每轉(zhuǎn)一圈,摩天輪上的點(diǎn)的起始位置在最低點(diǎn)處.

(1)已知在時(shí)刻時(shí)距離地面的高度,(其中),求時(shí)距離地面的高度;

(2)當(dāng)離地面以上時(shí),可以看到公園的全貌,求轉(zhuǎn)一圈中有多少時(shí)間可以看到公園的全貌?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校從參加高一年級(jí)期中考試的學(xué)生中抽出名學(xué)生,并統(tǒng)計(jì)了她們的數(shù)學(xué)成績(jī)(成績(jī)均為整數(shù)且滿分為分),數(shù)學(xué)成績(jī)分組及各組頻數(shù)如下:

樣本頻率分布表:

分組

頻數(shù)

頻率

合計(jì)

(1)在給出的樣本頻率分布表中,求的值;

(2)估計(jì)成績(jī)?cè)?/span>分以上(含分)學(xué)生的比例;

(3)為了幫助成績(jī)差的學(xué)生提高數(shù)學(xué)成績(jī),學(xué)校決定成立“二幫一”小組,即從成績(jī)?cè)?/span>的學(xué)生中選兩位同學(xué),共同幫助成績(jī)?cè)?/span>中的某一位同學(xué).已知甲同學(xué)的成績(jī)?yōu)?/span>分,乙同學(xué)的成績(jī)?yōu)?/span>分,求甲、乙兩同學(xué)恰好被安排在同一小組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,在底面中, 的中點(diǎn), 是棱的中點(diǎn), = = = = = =.

(1)求證: 平面

(2)求證:平面底面;

(3)試求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系 中,過(guò)橢圓 右焦點(diǎn) 的直線交橢圓兩點(diǎn) , 的中點(diǎn),且 的斜率為 .

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)過(guò)點(diǎn) 的直線 (不與坐標(biāo)軸垂直)與橢圓交于 兩點(diǎn),問(wèn):在 軸上是否存在定點(diǎn) ,使得 為定值?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在底面是菱形的四棱錐P﹣ABCD中, E、F分別為PD、AB的中點(diǎn),PAB為等腰直角三角形,PA平面ABCD,PA=1.

(1)求證:直線AE平面PFC;

(2)求證:PB⊥FC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為,且對(duì)任意正整數(shù),滿足

1)求數(shù)列的通項(xiàng)公式.

2)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

同步練習(xí)冊(cè)答案