精英家教網 > 高中數學 > 題目詳情
14.給出下列命題:
①若原命題為真,則這個命題的否命題,逆命題,逆否命題中至少有一個為真;
②若p是q成立的充分條件,則q是p成立的必要條件;
③若p是q的充要條件,則可記為p?q;
④命題“若p則q”的否命題是“若p則¬q”.
其中是真命題的是( 。
A.①②③B.②③④C.①③④D.②④

分析 ①,原命題與其逆否命題同真假,;
②,若p是q成立的充分條件,則q是p成立的必要條件;
③,若p是q的充要條件,則可記為p?q;
④,命題“若p則q”的否命題是“若¬p則¬q”,.

解答 解:對于①,原命題與其逆否命題同真假,故正確;
對于②,若p是q成立的充分條件,則q是p成立的必要條件,正確;
對于③,若p是q的充要條件,則可記為p?q,正確;
對于④,命題“若p則q”的否命題是“若¬p則¬q”,故錯.
故選:A

點評 本題考查了命題真假的判定,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

14.為了解籃球愛好者小李的投籃命中率與打籃球時間之間的關系,如表記錄了小李某月1號到5號每天打籃球的時間x(單位:小時)與當天投籃命中率y之間的關系:
 時間x 1 1.5 2 2.5 3
 命中率y 0.4 0.5 0.6 0.6 0.4
(Ⅰ)求小李這5天的平均投籃命中率
(Ⅱ)用線性回歸分析方法,預測小李該月6號打3.5小時籃球的投籃命中率(保留2位小數點)
參考公式$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-{y}_{i})^{2}}$,$\stackrel{∧}{a}$=y-$\stackrel{∧}$x.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

15.設i是虛數單位,則復數$\frac{2+3i}{1-i}$等于$-\frac{1}{2}+\frac{5}{2}i$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.將函數$f(x)=\sqrt{3}sin\frac{x}{2}-cos\frac{x}{2}$的圖象向右平移$\frac{2π}{3}$個單位長度得到函數y=g(x)的圖象,則函數y=g(x)的一個單調減區(qū)間是(  )
A.$(-\frac{π}{2},-\frac{π}{4})$B.$(-\frac{π}{4},\frac{π}{2})$C.$(\frac{π}{2},π)$D.$(\frac{3π}{2},2π)$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{6}}}{3}$,以M(1,0)為圓心,橢圓的短半軸長為半徑的圓與直線$x-y+\sqrt{2}-1=0$相切.
(1)求橢圓C的標準方程;
(2)已知點N(3,2),過點M任作直線l與橢圓C相交于A,B兩點,設直線AN,BN的斜率分別為k1,k2,請問 k1+k2是否為定值?如果是求出該值,如果不是說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.設全集為R,集合A={x|2x2-x-6≥0},B={x|log2x≤2}.
(1)分別求A∩B和(∁RB)∪A;
(2)已知C={x|a<x<a+1}且C⊆B,求實數a的取值范圍構成的集合.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.已知集合A={x|2≤x≤6},集合B={x|3x-7≥8-2x}.
(1)求∁R(A∩B);
(2)若C={x|x≤a},且A∪C=C,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

3.已知P(1,3-a),Q(-a,2),且向量|$\overrightarrow{PQ}$|=2,則實數a的值是±1.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.已知橢圓Г:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1,F2,離心率為$\frac{\sqrt{2}}{2}$,F2與橢圓上點的連線的中最短線段的長為$\sqrt{2}$-1.
(1)求橢圓Г的標準方程;
(2)已知Г上存在一點P,使得直線PF1,PF2分別交橢圓Г于A,B,若$\overrightarrow{P{F}_{1}}$=2$\overrightarrow{{F}_{1}A}$,$\overrightarrow{P{F}_{2}}$=λ$\overrightarrow{{F}_{2}B}$(λ>0),求λ的值.

查看答案和解析>>

同步練習冊答案