已知函數(shù)
(I)求函數(shù)的極值;
(II)若對(duì)任意的的取值范圍。
(I)取得極大值為-4;

(II)
(I)取得極大值為-4;

(II)
實(shí)數(shù)的最小值為
(I)…………1分

解得:…………2分
當(dāng)變化時(shí),的變化情況如下:


-1





0

0


增函數(shù)
極大值
減函數(shù)
極小值
增函數(shù)
…………4分
取得極大值為-4;
…………6分
(II)設(shè)

…………8分

…………10分
當(dāng)
當(dāng)


解不等式得:…………13分
當(dāng)滿足題意。
綜上所述
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù) 
(Ⅰ)求函數(shù)的極值點(diǎn);
(Ⅱ)當(dāng)p>0時(shí),若對(duì)任意的x>0,恒有,求p的取值范圍;
(Ⅲ)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)直線. 若直線l與曲線S同時(shí)滿足下列兩個(gè)條件:
①直線l與曲線S相切且至少有兩個(gè)切點(diǎn);
②對(duì)任意xR都有. 則稱(chēng)直線l為曲線S的“上夾線”.
(1) 類(lèi)比“上夾線”的定義,給出“下夾線”的定義;
(2) 已知函數(shù)取得極小值,求a,b的值;
(3) 證明:直線是(2)中曲線的“上夾線”。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題共12分)已知函數(shù)為自然對(duì)數(shù)的底數(shù)),為常數(shù)),是實(shí)數(shù)集 上的奇函數(shù).(Ⅰ)求證:;
(Ⅱ)討論關(guān)于的方程:的根的個(gè)數(shù);
(Ⅲ)設(shè),證明:為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=alnxbx,且f(1)=-1,f′(1)=0,
⑴求f(x);
⑵求f(x)的最大值;
⑶若x>0,y>0,證明:lnx+lny.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù) (a>0)
(1)求函數(shù)的單調(diào)區(qū)間,極大值,極小值
(2)若時(shí),恒有,求實(shí)數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分15分)已知a∈R,函數(shù)f (x) =x3 + ax2 + 2ax (x∈R).     (Ⅰ)當(dāng)a = 1時(shí),求函數(shù)f (x)的單調(diào)遞增區(qū)間;      (Ⅱ)函數(shù)f (x) 能否在R上單調(diào)遞減,若是,求出a的取值范圍;若不能,請(qǐng)說(shuō)明理由;  (Ⅲ)若函數(shù)f (x)在[-1,1]上單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

函數(shù))的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),、分別為函數(shù)的極大值點(diǎn)和極小值點(diǎn),且|AB|=2,.
(Ⅰ)求的值;
(Ⅱ)求函數(shù)的解析式;
(Ⅲ)若恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分)設(shè)函數(shù)(1)當(dāng)時(shí),求的最大值;(2)令,(0≤3),其圖象上任意一點(diǎn)處切線的斜率恒成立,求實(shí)數(shù)的取值范圍;(3)當(dāng),,方程有唯一實(shí)數(shù)解,求正數(shù)的值。

查看答案和解析>>

同步練習(xí)冊(cè)答案