【題目】在四棱錐P﹣ABCD中,設(shè)底面ABCD是邊長為1的正方形,PA⊥面ABCD.
(1)求證:PC⊥BD;
(2)過BD且與直線PC垂直的平面與PC交于點E,當(dāng)三棱錐E﹣BCD的體積最大時,求二面角E﹣BD﹣C的大。
【答案】
(1)證明:∵四邊形ABCD是正方形,∴BD⊥AC,PA⊥平面ABCD,
由此推出PA⊥BD,
又AC∩PA=A,
∴BD⊥平面PAC,而PC平面PAC,所以推出PC⊥BD
(2)解:設(shè)PA=x,三棱錐E﹣BCD的底面積為定值,求得它的高 ,
當(dāng) ,即 時,h最大值為 ,三棱錐E﹣BCD的體積達到最大值為 .
以點A為坐標(biāo)原點,AB為x軸,AD為y軸,PA為z軸建立空間直角坐標(biāo)系,則 ,令E(x,y,z), , ,得 ,∴ ,
設(shè) 是平面EBD的一個法向量, , ,
則 ,得 .
又 是平面BCD的一個法向量,
∴ ,∴二面角E﹣BD﹣C為
【解析】(1)證明BD⊥AC,PA⊥BD,即可證明BD⊥平面PAC,然后推出PC⊥BD.(2)設(shè)PA=x,三棱錐E﹣BCD的底面積為定值,求得它的高 ,求出三棱錐E﹣BCD的體積的最大值,以點A為坐標(biāo)原點,AB為x軸,AD為y軸,PA為z軸建立空間直角坐標(biāo)系,求出平面EBD的一個法向量,平面BCD的一個法向量,利用向量的數(shù)量積求解即可.
【考點精析】關(guān)于本題考查的直線與平面垂直的性質(zhì),需要了解垂直于同一個平面的兩條直線平行才能得出正確答案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 為f(x)的零點,x= 為y=f(x)圖象的對稱軸,且f(x)在( , )單調(diào),則ω的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著電商的快速發(fā)展,快遞業(yè)突飛猛進,到目前,中國擁有世界上最大的快遞市場.某快遞公司收取快遞費的標(biāo)準(zhǔn)是:重量不超過的包裹收費10元;重量超過的包裹,在收費10元的基礎(chǔ)上,每超過(不足,按計算)需再收5元.
該公司將最近承攬的100件包裹的重量統(tǒng)計如下:
公司對近60天,每天攬件數(shù)量統(tǒng)計如下表:
以上數(shù)據(jù)已做近似處理,并將頻率視為概率.
(1)計算該公司未來5天內(nèi)恰有2天攬件數(shù)在101~300之間的概率;
(2)①估計該公司對每件包裹收取的快遞費的平均值;
②根據(jù)以往的經(jīng)驗,公司將快遞費的三分之一作為前臺工作人員的工資和公司利潤,其余的用作其他費用.目前前臺有工作人員3人,每人每天攬件不超過150件,日工資100元.公司正在考慮是否將前臺工作人員裁減1人,試計算裁員前后公司每日利潤的數(shù)學(xué)期望,若你是決策者,是否裁減工作人員1人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知f(x+1)=x2+4x+1,求f(x)的解析式.
(2)已知f(x)是一次函數(shù),且滿足3f(x+1)-f(x)=2x+9.求f(x).
(3)已知f(x)滿足2f(x)+f =3x,求f(x).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年10月9日,教育部考試中心下發(fā)了《關(guān)于年普通高考考試大綱修訂內(nèi)容的通知》,在各科修訂內(nèi)容中明確提出,增加中華優(yōu)秀傳統(tǒng)文化的考核內(nèi)容,積極培育和踐行社會主義核心價值觀,充分發(fā)揮高考命題的育人功能和積極導(dǎo)向作用.鞍山市教育部門積極回應(yīng),編輯傳統(tǒng)文化教材,在全是范圍內(nèi)開設(shè)書法課,經(jīng)典誦讀等課程.為了了解市民對開設(shè)傳統(tǒng)文化課的態(tài)度,教育機構(gòu)隨機抽取了位市民進行了解,發(fā)現(xiàn)支持開展的占,在抽取的男性市民人中支持態(tài)度的為人.
支持 | 不支持 | 合計 | |
男性 | |||
女性 | |||
合計 |
(1)完成列聯(lián)表
(2)判斷是否有的把握認(rèn)為性別與支持有關(guān)?
附:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù),則下列結(jié)論錯誤的是( )
A. 是偶函數(shù) B. 的值域是
C. 方程的解只有 D. 方程的解只有
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知點P的直角坐標(biāo)為(1,2),點M的極坐標(biāo)為 ,若直線l過點P,且傾斜角為 ,圓C以M為圓心,3為半徑.
(1)求直線l的參數(shù)方程和圓C的極坐標(biāo)方程;
(2)設(shè)直線l與圓C相交于A,B兩點,求|PA||PB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)是定義在上的增函數(shù),實數(shù)使得對于任意都成立,則實數(shù)的取值范圍是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平行四邊形的三個頂點坐標(biāo)為,,.
(1)求平行四邊形的頂點D的坐標(biāo);
(2)在中,求邊上的高所在直線方程;
(3)求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com