精英家教網 > 高中數學 > 題目詳情

【題目】如圖,已知橢圓C:過原點的直線與橢圓交于AB兩點(點A在第一象限),過點Ax軸的垂線,垂足為點,設直線BE與橢圓的另一交點為P,連接AP得到直線l,交x軸于點M,交y軸于點N.

1)若,求直線AP的斜率;

2)記的面積分別為S1,S2,S3,求的的最大值.

【答案】1;(2.

【解析】

1)根據,求出的坐標,再求出直線的方程,并與橢圓方程聯立解得的坐標,最后用斜率公式可得直線AP的斜率;

2)設,則,利用三角形的面積公式求出,根據斜率公式和橢圓方程可得的斜率和直線的方程,進而求出的坐標和,最后用基本不等式可求得結果.

1)因為,所以,

所以,,

所以直線的方程為:,即,

聯立,消去并整理得,

所以,,所以,

所以.

2)設,,則,

,

因為在直線上,

所以,所以,

因為

所以,

因為

所以,

所以直線,

所以,,

所以,

所以

當且僅當時,等號成立.

所以的的最大值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐的底面為直角梯形,,,的中點.

(Ⅰ)求證:平面

(Ⅱ)若平面平面,異面直線所成角為60°,且是鈍角三角形,求二面角的正弦值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義:從數列{an}中抽取mmN,m≥3)項按其在{an}中的次序排列形成一個新數列{bn},則稱{bn}{an}的子數列;若{bn}成等差(或等比),則稱{bn}{an}的等差(或等比)子數列.

1)記數列{an}的前n項和為Sn,已知

①求數列{an}的通項公式;

②數列{an}是否存在等差子數列,若存在,求出等差子數列;若不存在,請說明理由.

2)已知數列{an}的通項公式為ann+aaQ+),證明:{an}存在等比子數列.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)若存在極值,求實數a的取值范圍;

2)設,設是定義在上的函數.

)證明:上為單調遞增函數(的導函數);

)討論的零點個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓.E為橢圓在第一象限內一點,點F在橢圓上且與點E關于原點對稱,直線與橢圓交于A,B兩點,則點E,F到直線x+y-1=0的距離之和的最大值是________;此時四邊形AEBF的面積是________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖為某街區(qū)道路示意圖,圖中的實線為道路,每段道路旁的數字表示單向通過此段道路時會遇見的行人人數,在防控新冠肺炎疫情期間,某人需要從A點由圖中的道路到B點,為避免人員聚集,此人選擇了一條遇見的行人總人數最小的從AB的行走線路,則此人從AB遇見的行人總人數最小值是_________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點到直線的距離為,過點的直線交于兩點.

1)求拋物線的準線方程;

2)設直線的斜率為,直線的斜率為,若,且的交點在拋物線上,求直線的斜率和點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】過正四面體ABCD的頂點A作一個形狀為等腰三角形的截面,且使截面與底面BCD所成的角為,這樣的截面有(

A.6B.12C.16D.18

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在從100到999的所有三位數中,百位、十位、個位數字依次構成等差數列的有__________個;構成等比數列的有__________個.

查看答案和解析>>

同步練習冊答案