已知四邊形ABCD是菱形,∠BAD=60°,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,G,H分別是CE,CF的中點(diǎn).
(1)求證:平面AEF∥平面BDGH
(2)若平面BDGH與平面ABCD所成的角為60°,求直線CF與平面BDGH所成的角的正弦值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角梯形中,,,,如圖,把沿翻折,使得平面平面.
(1)求證:;
(2)若點(diǎn)為線段中點(diǎn),求點(diǎn)到平面的距離;
(3)在線段上是否存在點(diǎn),使得與平面所成角為?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,AB=AA1=.
(1)證明:A1C⊥平面BB1D1D;
(2)求平面OCB1與平面BB1D1D的夾角θ的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,E為BD的中點(diǎn),G為PD的中點(diǎn),△DAB≌△DCB,EA=EB=AB=1,PA=,連接CE并延長交AD于F.
(1)求證:AD⊥平面CFG;
(2)求平面BCP與平面DCP的夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,已知PB⊥底面ABCD,BC⊥AB,AD∥BC,AB=AD=2,CD⊥PD,異面直線PA和CD所成角等于60°.
(1)求證:面PCD⊥面PBD;
(2)求直線PC和平面PAD所成角的正弦值的大小;
(3)在棱PA上是否存在一點(diǎn)E,使得二面角A-BE-D的余弦值為?若存在,指出點(diǎn)E在棱PA上的位置,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在四棱錐P-ABCD中,底面ABCD是邊長為1的正方形,且PA⊥平面ABCD.
(1)求證:PC⊥BD;
(2)過直線BD且垂直于直線PC的平面交PC于點(diǎn)E,且三棱錐E-BCD的體積取到最大值.
①求此時(shí)四棱錐E-ABCD的高;
②求二面角A-DE-B的正弦值的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,⊥平面,底面為梯形,∥,⊥,,點(diǎn)在棱上,且.
(1)當(dāng)時(shí),求證:∥面;
(2)若直線與平面所成角為,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知:四棱錐P—ABCD的底面為直角梯形,且AB∥CD,∠DAB=90o,DC=2AD=2AB,側(cè)面PAD與底面垂直,PA=PD,點(diǎn)M為側(cè)棱PC上一點(diǎn).
(1)若PA=AD,求PB與平面PAD的所成角大小;
(2)問多大時(shí),AM⊥平面PDB可能成立?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com