如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,AB=AA1=.
(1)證明:A1C⊥平面BB1D1D;
(2)求平面OCB1與平面BB1D1D的夾角θ的大小.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在四棱錐中,側(cè)面底面,,底面是直角梯形,,,,.
(1)求證:平面;
(2)設(shè)為側(cè)棱上一點(diǎn),,試確定的值,使得二面角為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直三棱柱(側(cè)棱和底面垂直的棱柱)中,,,,且滿足.
(1)求證:平面側(cè)面;
(2)求二面角的平面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,正方形ADEF與梯形ABCD所在的平面互相垂直,,,,點(diǎn)M在線段EC上(除端點(diǎn)外)
(1)當(dāng)點(diǎn)M為EC中點(diǎn)時(shí),求證:平面;
(2)若平面與平面ABF所成二面角為銳角,且該二面角的余弦值為時(shí),求三棱錐的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐的底面為一直角梯形,側(cè)面PAD是等邊三角形,其中,,平面底面,是的中點(diǎn).
(1)求證://平面;
(2)求與平面BDE所成角的余弦值;
(3)線段PC上是否存在一點(diǎn)M,使得AM⊥平面PBD,如果存在,求出PM的長度;如果不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓上的點(diǎn).
(1)求證:平面PAC⊥平面PBC;
(2)若AB=2,AC=1,PA=1,求二面角CPBA的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知四邊形ABCD是菱形,∠BAD=60°,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,G,H分別是CE,CF的中點(diǎn).
(1)求證:平面AEF∥平面BDGH
(2)若平面BDGH與平面ABCD所成的角為60°,求直線CF與平面BDGH所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直三棱柱ABC-A1B1C1中,△ABC是等邊三角形,D是BC的中點(diǎn).
(1)求證:A1B∥平面ADC1;
(2)若AB=BB1=2,求A1D與平面AC1D所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直三棱柱ABC-A1B1C1中,底面△ABC為等腰直角三角形,∠B = 900,D為棱BB1上一點(diǎn),且面DA1 C⊥面AA1C1C.求證:D為棱BB1中點(diǎn);(2)為何值時(shí),二面角A -A1D - C的平面角為600.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com