設(shè)f(x)=3-|x-1|,則
2
-2
f(x)dx=
 
考點:定積分
專題:計算題,導(dǎo)數(shù)的綜合應(yīng)用
分析:把被積函數(shù)分段去掉絕對值,把要求的定積分轉(zhuǎn)化為兩個定積分的和,求出被積函數(shù)的原函數(shù),分別代入積分上限和積分下限后作差得答案.
解答: 解:∵f(x)=3-|x-1|,
2
-2
f(x)dx=
2
-2
(3-|x-1|)dx

=
1
-2
(x+2)dx
+∫
2
1
(4-x)dx

=(
1
2
x2+2x)
|
1
-2
+(4x-
1
2
x2)
|
2
1

=
1
2
+2-
1
2
×4+4+4×2-
1
2
×4-4+
1
2
=7.
故答案為:7.
點評:本題考查了定積分的求法,當(dāng)被積函數(shù)需要分段時,往往把要求的定積分轉(zhuǎn)化為定積分的和,注意積分區(qū)間的改變,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的通項公式為an=20-3n.
(1)證明數(shù)列{an}是等差數(shù)列;
(2)求{|an|}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校隨機(jī)抽取某次高三數(shù)學(xué)模擬考試甲、乙兩班各10名同學(xué)的客觀題成績(滿分60分),統(tǒng)計后獲得成績數(shù)據(jù)的莖葉圖(以十位數(shù)字為莖,個位數(shù)字為葉),如圖所示:
(Ⅰ)分別計算兩組數(shù)據(jù)的平均數(shù),并比較哪個班級的客觀題平均成績更好;
(Ⅱ)從這兩組數(shù)據(jù)各取兩個數(shù)據(jù),求其中至少有2個滿分(60分)的概率;
(Ⅲ)規(guī)定客觀題成績不低于55分為“優(yōu)秀客觀卷”,以這20人的樣本數(shù)據(jù)來估計此次高三數(shù)學(xué)模擬的總體數(shù)據(jù),若從總體中任選4人,記X表示抽到“優(yōu)秀客觀卷”的學(xué)生人數(shù),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于在區(qū)間[a,b]上有意義的兩個函數(shù)f(x)與g(x),如果對于任意x∈[a,b],均有|f(x)-g(x)|≤1,則稱f(x)與g(x)在[a,b]上是接近的.若函數(shù)y=x2-3x+2與函數(shù)y=2x-3在區(qū)間[a,b]上非常接近,則該區(qū)間可以是
 
.(寫出一個符合條件的區(qū)間即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一次考試中,某班語文、數(shù)學(xué)、外語平均分在80分以上的概率分別為
2
5
、
1
5
、
2
5
,則該班的三科平均分都在80分以上的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若定積分
a
0
|x-1|dx=
2
3
,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系.已知直線ρsin(θ+
π
3
)=
1
2
與曲線
x=
1
2
(t+
1
t
)
y=t-
1
t
(t為參數(shù))相交于A,B兩點,若M為線段AB的中點,則直線OM的斜率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}的各項均為正數(shù),a2=8,且2a4,a3,4a5成等差數(shù)列,則{an}的前5項和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,定義兩點P(x1,y1)、Q(x2、y2)之間的“直角距離”為d(P,Q)=|x1-x2|+|y1-y2|,現(xiàn)有下列四個命題:
①已知兩點P(2,3),Q(sin2α,cos2α)(α∈R),則d(P,Q)為定值;
②原點O到直線x-y+1=0上任一點P的直角距離d(O,P)的最小值為
2
2
;
③若|PQ|表示P、Q兩點間的距離,那么|PQ|≥
2
2
d(P,Q);
④設(shè)點A(x,y)且x,y∈Z,若點A在過P(0,2)與Q(5,7)的直線上,且點A到點P與Q的直角距離之和等于10,那么滿足條件的點A只有5個.
其中是真命題的是
 
(寫出所有真命題的序號).

查看答案和解析>>

同步練習(xí)冊答案