【題目】設(shè)函數(shù),,,
(1)求在處的切線的一般式方程;
(2)請判斷與的圖像有幾個交點(diǎn)?
(3)設(shè)為函數(shù)的極值點(diǎn),為與的圖像一個交點(diǎn)的橫坐標(biāo),且,證明:.
【答案】(1)(2)與的圖像有2交點(diǎn)(3)證明見解析
【解析】
(1)利用導(dǎo)數(shù)求得切線的斜率,結(jié)合切點(diǎn)坐標(biāo)求得切線方程.
(2)構(gòu)造函數(shù),利用導(dǎo)數(shù)研究的單調(diào)區(qū)間和零點(diǎn),由此判斷與的圖像的交點(diǎn)個數(shù).
(3)結(jié)合(2)以及題意得到,化簡得到,利用放縮法以及取對數(shù)運(yùn)算,化簡證得成立.
(1)由得切線的斜率為,切點(diǎn)為.
∴切線方程為:,
∴所求切線的一般式方程為.
(2)令由題意可知,的定義域?yàn)?/span>,
且.
令,得,由,得,可知在
內(nèi)單調(diào)遞減,
又,且,
故在內(nèi)有唯一解,從而在內(nèi)有唯一解,不妨設(shè)為,
則,當(dāng)時,,∴在內(nèi)單調(diào)遞增;
當(dāng)時,,∴在內(nèi)單調(diào)遞減,
因此是的唯一極值點(diǎn).
令,則當(dāng)時,,故在內(nèi)單調(diào)遞減,
∴當(dāng)時,,即,
從而,
又因?yàn)?/span>,∴在內(nèi)有唯一零點(diǎn),
又在內(nèi)有唯一零點(diǎn)1,從而,在內(nèi)恰有兩個零點(diǎn).
所以與的圖像有2交點(diǎn);
(3)由(2)及題意,即
從而,即,
∵當(dāng)時,,又,故,
兩邊取對數(shù),得,
于是,整理得,命題得證.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三位同學(xué)進(jìn)行羽毛球比賽,約定賽制如下:累計(jì)負(fù)兩場者被淘汰;比賽前抽簽決定首先比賽的兩人,另一人輪空;每場比賽的勝者與輪空者進(jìn)行下一場比賽,負(fù)者下一場輪空,直至有一人被淘汰;當(dāng)一人被淘汰后,剩余的兩人繼續(xù)比賽,直至其中一人被淘汰,另一人最終獲勝,比賽結(jié)束.經(jīng)抽簽,甲、乙首先比賽,丙輪空.設(shè)每場比賽雙方獲勝的概率都為,
(1)求甲連勝四場的概率;
(2)求需要進(jìn)行第五場比賽的概率;
(3)求丙最終獲勝的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年6月25日,《固體廢物污染環(huán)境防治法(修訂草案)》初次提請全國人大常委會審議,草案對“生活垃圾污染環(huán)境的防治”進(jìn)行了專項(xiàng)規(guī)定.某小區(qū)采取一系列措施,宣傳垃圾分類的知識與意義,并采購分類垃圾箱.為了了解垃圾分類的效果,該小區(qū)物業(yè)隨機(jī)抽取了200位居民進(jìn)行問卷調(diào)查,每位居民對小區(qū)采取的措施給出“滿意”或“不滿意”的評價.根據(jù)調(diào)查結(jié)果統(tǒng)計(jì)并做出年齡分布條形圖和持不滿意態(tài)度的居民的結(jié)構(gòu)比例圖,如圖,在這200份問卷中,持滿意態(tài)度的頻率是0.65.
(1)完成下面的列聯(lián)表,并判斷能否有的把握認(rèn)為“51歲及以上”和“50歲及以下”的居民對該小區(qū)采取的措施的評價有差異
滿意 | 不滿意 | 總計(jì) | |
51歲及以上的居民 | |||
50歲及以下的居民 | |||
總計(jì) | 200 |
(2)按“51歲及以上”和“50歲及以下”的年齡段采取分層抽樣的方法從中隨機(jī)抽取5份,再從這5份調(diào)查問卷中隨機(jī)抽取2份進(jìn)行電話家訪,求電話家訪的兩位居民恰好一位年齡在51歲及以上,另一位年齡在50歲及以下的概率.
0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附表及參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若在點(diǎn)處的切線為,求的值;
(2)求的單調(diào)區(qū)間;
(3)若,求證:在時,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義城為R的函數(shù),若滿足:①;②當(dāng),且時,都有;③當(dāng)且時,都有,則稱為“偏對稱函數(shù)”.下列函數(shù)是“偏對稱函數(shù)”的是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線l過拋物線C:y2=4x的焦點(diǎn)F且與C交于A(x1,y1),B(x2,y2)兩點(diǎn),則y1y2=_____.過A,B兩點(diǎn)分別作拋物線C的準(zhǔn)線的垂線,垂足分別為P,Q,準(zhǔn)線與x軸的交點(diǎn)為M,四邊形FAPM的面積記為S1,四邊形FBQM的面積記為S2,則S1S2﹣3|AF||BF|=_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且asinBbcosA+a=bcosC+ccosB.
(1)求A;
(2)若a,點(diǎn)D在BC上,且AD⊥AC,當(dāng)△ABC的周長取得最大值時,求BD的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是拋物線的焦點(diǎn),過點(diǎn)且與坐標(biāo)軸不垂直的直線交拋物線于、兩點(diǎn),交拋物線的準(zhǔn)線于點(diǎn),其中,.過點(diǎn)作軸的垂線交拋物線于點(diǎn),直線交拋物線于點(diǎn).
(1)求的值;
(2)求四邊形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線,設(shè)直線經(jīng)過點(diǎn)且與拋物線相交于兩點(diǎn),拋物線在、兩點(diǎn)處的切線相交于點(diǎn),直線,分別與軸交于、兩點(diǎn).
(1)求點(diǎn)的軌跡方程
(2)當(dāng)點(diǎn)不在軸上時,記的面積為,的面積為,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com