【題目】如圖,是拋物線(xiàn)的焦點(diǎn),過(guò)點(diǎn)且與坐標(biāo)軸不垂直的直線(xiàn)交拋物線(xiàn)于、兩點(diǎn),交拋物線(xiàn)的準(zhǔn)線(xiàn)于點(diǎn),其中,.過(guò)點(diǎn)作軸的垂線(xiàn)交拋物線(xiàn)于點(diǎn),直線(xiàn)交拋物線(xiàn)于點(diǎn).
(1)求的值;
(2)求四邊形的面積的最小值.
【答案】(1);(2).
【解析】
(1)設(shè)直線(xiàn)的方程為,將該直線(xiàn)方程與拋物線(xiàn)的方程聯(lián)立,消去,得到關(guān)于的二次方程,利用韋達(dá)定理結(jié)合可求出正數(shù)的值;
(2)由直線(xiàn)與坐標(biāo)軸不垂直,所以設(shè)方程為,并設(shè)點(diǎn),將直線(xiàn)的方程與拋物線(xiàn)的方程聯(lián)立,列出韋達(dá)定理,并求出,求出點(diǎn)的坐標(biāo),可得出點(diǎn)的坐標(biāo),并可得出直線(xiàn)的方程,將該直線(xiàn)方程與拋物線(xiàn)的方程聯(lián)立,利用韋達(dá)定理得出點(diǎn)的坐標(biāo),并分別計(jì)算出點(diǎn)、到直線(xiàn)的距離、,利用三角形的面積公式可得出關(guān)于的表達(dá)式,設(shè),構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最小值,即可得出的最小值.
(1)設(shè)方程為,與聯(lián)立,消去整理得,
所以,得(舍去)或;
(2)由(1)知拋物線(xiàn)方程為,,準(zhǔn)線(xiàn)方程為.
因?yàn)橹本(xiàn)與坐標(biāo)軸不垂直,所以設(shè)方程為,,
由得,,,
所以,
令,則,所以,,
直線(xiàn)的方程為,由得,
所以,,代入,得,所以.
到直線(xiàn)的距離為,到直線(xiàn)的距離為,
所以四邊形的面積,
令,則,令,則.
當(dāng)時(shí),,函數(shù)單調(diào)遞減,
當(dāng)時(shí),,函數(shù)單調(diào)遞增.
所以,當(dāng)時(shí),有最小值,
因此,四邊形的面積的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(理)某學(xué)校高一年級(jí)學(xué)生某次身體素質(zhì)體能測(cè)試的原始成績(jī)采用百分制,已知所有這些學(xué)生的原始成績(jī)均分布在內(nèi),發(fā)布成績(jī)使用等級(jí)制各等級(jí)劃分標(biāo)準(zhǔn)見(jiàn)下表,規(guī)定:三級(jí)為合格等級(jí),為不合格等級(jí).
百分制 | 85分及以上 | 70分到84分 | 60分到69分 | 60分以下 |
等級(jí) |
為了解該校高一年級(jí)學(xué)生身體素質(zhì)情況,從中抽取了名學(xué)生的原始成績(jī)作為樣本進(jìn)行統(tǒng)計(jì),按照的分組作出頻率分布直方圖如圖所示,樣本中分?jǐn)?shù)在80分及以上的所有數(shù)據(jù)的莖葉圖如圖所示.,
(1)求和頻率分布直方圖中的的值;
(2)根據(jù)樣本估計(jì)總體的思想,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,若在該校高一學(xué)生任選3人,求至少有1人成績(jī)是合格等級(jí)的概率;
(3)在選取的樣本中,從兩個(gè)等級(jí)的學(xué)生中隨機(jī)抽取了3名學(xué)生進(jìn)行調(diào)研,記表示所抽取的名學(xué)生中為等級(jí)的學(xué)生人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),,,
(1)求在處的切線(xiàn)的一般式方程;
(2)請(qǐng)判斷與的圖像有幾個(gè)交點(diǎn)?
(3)設(shè)為函數(shù)的極值點(diǎn),為與的圖像一個(gè)交點(diǎn)的橫坐標(biāo),且,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知曲線(xiàn)C的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線(xiàn)l的極坐標(biāo)方程為ρ(cosθ+sinθ)=8.
(1)求曲線(xiàn)C和直線(xiàn)l的直角坐標(biāo)方程;
(2)若射線(xiàn)m的極坐標(biāo)方程為θ(ρ≥0),設(shè)m與C相交于點(diǎn)M(非坐標(biāo)原點(diǎn)),m與l相交于點(diǎn)N,點(diǎn)P(6,0),求△PMN的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某國(guó)營(yíng)企業(yè)集團(tuán)公司現(xiàn)有員工1000名,平均每人每年創(chuàng)造利潤(rùn)10萬(wàn)元.為了激化內(nèi)部活力,增強(qiáng)企業(yè)競(jìng)爭(zhēng)力,集團(tuán)公司董事會(huì)決定優(yōu)化產(chǎn)業(yè)結(jié)構(gòu),調(diào)整出()名員工從事第三產(chǎn)業(yè);調(diào)整后,他們平均每人每年創(chuàng)造利潤(rùn)萬(wàn)元,剩下的員工平均每人每年創(chuàng)造的利潤(rùn)可以提高%.
(Ⅰ)若要保證剩余員工創(chuàng)造的年總利潤(rùn)不低于原來(lái)1000名員工創(chuàng)造的年總利潤(rùn),則最多調(diào)整出多少名員工從事第三產(chǎn)業(yè)?
(Ⅱ)在(1)的條件下,若調(diào)整出的員工創(chuàng)造的年總利潤(rùn)始終不高于剩余員工創(chuàng)造的年總利潤(rùn),則實(shí)數(shù)的取值范圍是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,,,過(guò)點(diǎn)的直線(xiàn)與橢圓相交于點(diǎn),兩點(diǎn)(兩點(diǎn)均在軸的上方),且,
(1)若,求橢圓的方程;
(2)直線(xiàn)的斜率;
(3)求的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某保險(xiǎn)公司為客戶(hù)定制了5個(gè)險(xiǎn)種:甲,一年期短險(xiǎn);乙,兩全保險(xiǎn);丙,理財(cái)類(lèi)保險(xiǎn);丁,定期壽險(xiǎn):戊,重大疾病保險(xiǎn),各種保險(xiǎn)按相關(guān)約定進(jìn)行參保與理賠.該保險(xiǎn)公司對(duì)5個(gè)險(xiǎn)種參?蛻(hù)進(jìn)行抽樣調(diào)查,得出如下的統(tǒng)計(jì)圖例,以下四個(gè)選項(xiàng)錯(cuò)誤的是( )
A.54周歲以上參保人數(shù)最少B.18~29周歲人群參?傎M(fèi)用最少
C.丁險(xiǎn)種更受參保人青睞D.30周歲以上的人群約占參保人群的80%
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了積極穩(wěn)妥疫情期間的復(fù)學(xué)工作,市教育局抽調(diào)5名機(jī)關(guān)工作人員去某街道3所不同的學(xué)校開(kāi)展駐點(diǎn)服務(wù),每個(gè)學(xué)校至少去1人,若甲、乙兩人不能去同一所學(xué)校,則不同的分配方法種數(shù)為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知實(shí)數(shù)滿(mǎn)足,若的最大值為,最小值為,則實(shí)數(shù)的取值范圍是( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com