(本小題滿分13分)
計算下列各式的值:
(1);     (2) .

(1)原式=;(2)原式=-4

解析試題分析:(1)注意根式與分數(shù)指數(shù)冪之間的轉(zhuǎn)換問題。(2)利用對數(shù)式的結(jié)論lg5+lg2=1,來化簡求解得到結(jié)論。
解:
(1)原式=;.............................................6分
(2)原式=-4.................................................................13分
考點:本試題主要考查了指數(shù)式和對數(shù)式的運算問題。
點評:解決該試題的關(guān)鍵是將不是同底的指數(shù)函數(shù)化為同底的指數(shù)函數(shù),不是同底的對數(shù)函數(shù)化為同底的對數(shù)哈數(shù),結(jié)合運算性質(zhì)得到。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)某市“環(huán)保提案”對某處的環(huán)境狀況進行了實地調(diào)研,據(jù)測定,該處的污染指數(shù)與附近污染源的強度成正比,與到污染源的距離成反比,比例常數(shù)為.現(xiàn)已知相距,兩家化工廠(污染源)的污染強度分別為正數(shù),,它們連線上任意一點C處的污染指數(shù)等于兩化工廠對該處的污染指數(shù)之和.設.
(1) 試將表示為的函數(shù);
(2) 若時,處取得最小值,試求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分) 已知函數(shù)
(1)討論函數(shù)在定義域內(nèi)的極值點的個數(shù);
(2)若函數(shù)處取得極值,對,恒成立,求實數(shù)的取值范圍;
(3)當時,試比較的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2013年全國第十二屆全運會由沈陽承辦。城建部門計劃在渾南新區(qū)建造一個長方形公園ABCD,公園由長方形的休閑區(qū)A1B1C1D1(陰影部分)和環(huán)公園人行道組成。已知休閑區(qū)A1B1C1D1的面積為4000平方米,人行道的寬分別為4米和10米。
(1)若設休閑區(qū)的長米,求公園ABCD所占面積S關(guān)于的函數(shù)的解析式;
(2)要使公園所占面積最小,休閑區(qū)A1B1C1D1的長和寬該如何設計?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
計算   (1)  
(2) 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)設某物體一天中的溫度是時間的函數(shù):,其中溫度的單位是,時間單位是小時,表示12:00,取正值表示12:00以后.若測得該物體在8:00的溫度是,12:00的溫度為,13:00的溫度為,且已知該物體的溫度在8:00和16:00有相同的變化率.
(1)寫出該物體的溫度關(guān)于時間的函數(shù)關(guān)系式;
(2)該物體在10:00到14:00這段時間中(包括10:00和14:00),何時溫度最高,并求出最高溫度;
(3)如果規(guī)定一個函數(shù)在區(qū)間上的平均值為,求該物體在8:00到16:00這段時間內(nèi)的平均溫度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知函數(shù),
(1)      判斷函數(shù)的奇偶性,并證明;
(2) 判斷的單調(diào)性,并說明理由。(不需要嚴格的定義證明,只要說出理由即可)
(3) 若,方程是否有根?如果有根,請求出一個長度為1的區(qū)間,使;如果沒有,請說明理由。(注:區(qū)間的長度=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)(Ⅰ)若,求實數(shù)的取值范圍;
(Ⅱ)二次函數(shù),滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)時取得極值.
(Ⅰ)求a、b的值;
(Ⅱ)若對于任意的,都有成立,求c的取值范圍.

查看答案和解析>>

同步練習冊答案