(12分)已知 (
(1)求的定義域。
(2)判斷的關(guān)系,并就此說明函數(shù)圖像的特點(diǎn)。
(3)求使的點(diǎn)的的取值范圍。

(1)由題意得
所以
(2)
的圖像關(guān)于原點(diǎn)對稱。
(3)由
 得

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般
情況下,大橋上的車流速度(單位:千米/小時)是車流密度(單位:輛/千
米)的函數(shù).當(dāng)橋上的車流密度達(dá)到200輛/千米時,造成堵塞,此時車流速度
為0;當(dāng)車流密度不超過20輛/千米時,車流速度為60千米/小時.研究表明:
當(dāng)時,車流速度是車流密度的一次函數(shù).
(Ⅰ)當(dāng)時,求函數(shù)的表達(dá)式;
(Ⅱ)當(dāng)車流密度為多大時,車流量(單位時間內(nèi)通過橋上某觀測點(diǎn)的車輛數(shù),
單位:輛/小時)可以達(dá)到最大,并求出最大值.(精確到1輛/小時)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)求函數(shù)的零點(diǎn);
(2)在坐標(biāo)系中畫出函數(shù)的圖象;
(3)討論方程解的情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù)滿足:①定義域是; ②當(dāng)時,
③對任意,總有
(1)求出的值;
(2)判斷函數(shù)的單調(diào)性,并用單調(diào)性的定義證明你的結(jié)論;
(3)寫出一個滿足上述條件的具體函數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品, 根據(jù)市場調(diào)查與預(yù)測, 甲產(chǎn)品的利潤與投資成正比, 其關(guān)系如圖1, 乙產(chǎn)品的利潤與投資的算術(shù)平方根成正比, 其關(guān)系如圖2 (注: 利潤與投資的單位: 萬元).
(Ⅰ) 分別將甲、乙兩種產(chǎn)品的利潤表示為投資的函數(shù)關(guān)系式;
(Ⅱ) 該企業(yè)籌集了100萬元資金投入生產(chǎn)甲、乙兩種產(chǎn)品, 問: 怎樣分配這100萬元資金, 才能使企業(yè)獲得最大利潤, 其最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題共10分)已知函數(shù).
(1)求函數(shù)的定義域;
(2)求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

心理學(xué)家發(fā)現(xiàn),學(xué)生的接受能力依賴于老師引入概念和描述問題所用的時間,上課開始時,學(xué)生的興趣激增,中間有一段不太長的時間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開始分散,并趨于穩(wěn)定.分析結(jié)果和實(shí)驗(yàn)表明,設(shè)提出和講述概念的時間為(單位:分),學(xué)生的接受能力為值越大,表示接受能力越強(qiáng)),
  
(1)開講后多少分鐘,學(xué)生的接受能力最強(qiáng)?能維持多少時間?
(2)試比較開講后5分鐘、20分鐘、35分鐘,學(xué)生的接受能力的大;
(3)若一個數(shù)學(xué)難題,需要56的接受能力以及12分鐘時間,老師能否及時在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講述完這個難題?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題


若二次項(xiàng)系數(shù)為a的二次函數(shù)同時滿足如下三個條件,求的解析式.
;②;③對任意實(shí)數(shù),都有恒成立.
(文) 設(shè)二次函數(shù)滿足:(1),(2)被軸截得的弦長為2,(3)在軸截距為6,求此函數(shù)解析式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

二次函數(shù),滿足為偶函數(shù),且方程有相等實(shí)根。
(1)求的解析式;
(2)求上的最大值。

查看答案和解析>>

同步練習(xí)冊答案