已知軸對(duì)稱平面五邊形(如圖1),為對(duì)稱軸,,,,將此圖形沿折疊成直二面角,連接、得到幾何體(如圖2).
(Ⅰ)證明:∥平面;
(Ⅱ)求二面角的余弦值.
(Ⅰ)詳見(jiàn)解析;(Ⅱ).
解析試題分析:(Ⅰ)主要利用空間向量、線線平行可證線面平行;(Ⅱ)主要利用平面的法向量來(lái)求二面角的平面角.
試題解析:(Ⅰ)以B為坐標(biāo)原點(diǎn),分別以射線BF、BC、BA為x軸、 y軸、z軸的正方向建立如圖所示的坐標(biāo)系.
由已知與平面幾何知識(shí)得,,
∴,
∴,∴AF∥DE,
又平面,且平面
∴∥平面
(Ⅱ)由(Ⅰ)得四點(diǎn)共面,,
設(shè)平面,,則,
不妨令,故,
由已知易得平面ABCD的一個(gè)法向量為,
∴,∴二面角E-AD-B的余弦值為.
考點(diǎn):立體幾何線面平行的證明、二面角的求解,考查學(xué)生的空間想象能力和空間向量的使用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)在三棱柱中,側(cè)面為矩形,,,為的中點(diǎn),與交于點(diǎn),側(cè)面.
(1)證明:;
(2)若,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在四棱錐中,底面是正方形,側(cè)面是正三角形,平面底面.
(Ⅰ)如果為線段VC的中點(diǎn),求證:平面;
(Ⅱ)如果正方形的邊長(zhǎng)為2, 求三棱錐的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在如圖所示的幾何體中,四邊形是正方形,平面,,分別為,的中點(diǎn),且.
(Ⅰ)求證:平面平面;
(Ⅱ)求三棱錐與四棱錐的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知三棱柱,底面三角形為正三角形,側(cè)棱底面,,為的中點(diǎn),為中點(diǎn).
(Ⅰ)求證:直線平面;
(Ⅱ)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知幾何體A—BCED的三視圖如圖所示,其中俯視圖和側(cè)視圖都是腰長(zhǎng)為4的等腰直角三角形,正視圖為直角梯形.
(1)求此幾何體的體積V的大小;
(2)求異面直線DE與AB所成角的余弦值;
(3)試探究在DE上是否存在點(diǎn)Q,使得AQBQ并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖(1),在等腰直角三角形中,,點(diǎn)分別為線段的中點(diǎn),將和分別沿折起,使二面角和二面角都成直二面角,如圖(2)所示。
(1)求證:面;
(2)求平面與平面所成的銳二面角的余弦值;
(3)求點(diǎn)到平面的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)如圖,四棱錐中,平面,四邊形是矩形,,分別是,的中點(diǎn).若,。
(1)求證:平面;
(2)求直線平面所成角的正弦值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com