【題目】已知圓.

(Ⅰ)若圓的切線在軸和軸上的截距相等,求此切線的方程;

(Ⅱ)從圓外一點向該圓引一條切線,切點為為坐標原點,且有,求使得

取得最小值時點的坐標.

【答案】(I,或,或,或;II.

【解析】

試題分析:(I)當直線的截距為零時,設(shè)切線方程為,當直線的截距不為零時,設(shè)切線方程為,分別根據(jù)圓心到直線的距離等于圓的半徑,求解的值,即可求解切線的方程;(II)由,得,當取最小值時,即取得最小值,直線,得出直線的方程為,聯(lián)立方程組,即可求解的坐標.

試題解析:(I)將圓配方得,

①當直線在兩坐標軸上的截距為零時,設(shè)直線方程為,

,解得,得,

②當直線在兩坐標軸上的截距不為零時,設(shè)直線方程為,

,得,即,或

∴直線方程為,或

綜上,圓的切線方程為,或,或,或.

II)由,得,整理得,

即點在直線上,

取最小值時,即取得最小值,直線,∴直線的方程為

解方程組,得點的坐標為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點,圓是以的中點為圓心,為半徑的圓.

(1)若圓的切線在軸和軸上截距相等,求切線方程;

(2)若是圓外一點,從向圓引切線,為切點,為坐標原點,,求使最小的點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)當時,求證:;

(2)當函數(shù)與函數(shù)有且僅有一個交點,求的值;

(3)討論函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用反證法證明命題“三角形的內(nèi)角至多有一個鈍角”時,應假設(shè)為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)p:實數(shù)x滿足,其中,命題實數(shù)滿足

|x-3|≤1 .

(1)若為真,求實數(shù)的取值范圍;

(2)若的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)在定義域內(nèi)存在實數(shù),使得成立,則稱為函數(shù)可增點.

(1)判斷函數(shù)是否存在可增點?若存在,求出的取值范圍;若不存在,說明理由;

(2)若函數(shù)上存在可增點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某車間將10名技工平均分為甲,乙兩組加工某種零件,在單位時間內(nèi)每個技工加工零件若干,其中合格零件的個數(shù)如下表:

1號

2號

3號

4號

5號

甲組

4

5

7

9

10

乙組

5

6

7

8

9

(1)分別求出甲,乙兩組技工在單位時間內(nèi)完成合格零件的平均數(shù)及方差,并由此判斷哪組工人的技術(shù)水平更好;

(2)質(zhì)監(jiān)部門從該車間甲,乙兩組中各隨機抽取1名技工,對其加工的零件進行檢測,若兩人完成合格零件個數(shù)之和超過12件,則稱該車間質(zhì)量合格,否則不合格.求該車間質(zhì)量不合格的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形是正方形,平面,分別為的中點.

(1)求證:平面

(2)求平面與平面所成銳二面角的大。

(3)在線段上是否存在一點,使直線與直線所成的角為?若存在,求出線段的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列關(guān)于棱柱的說法中,錯誤的是(  )

A. 三棱柱的底面為三角形

B. 一個棱柱至少有五個面

C. 若棱柱的底面邊長相等,則它的各個側(cè)面全等

D. 五棱柱有5條側(cè)棱、5個側(cè)面,側(cè)面為平行四邊形

查看答案和解析>>

同步練習冊答案