已知圓O:x2+y2=25,點A(-3,0)、B(3,0),一條拋物線以圓O的切線為準線且過點A和B,則這列拋物線的焦點的軌跡方程是( 。
A、
x2
25
+
y2
16
=1(x≠0)
B、
x2
25
+
y2
16
=1(y≠0)
C、
x2
25
+
y2
9
=1(x≠0)
D、
x2
25
+
y2
9
=1(y≠0)
考點:軌跡方程
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:設出切點與切線方程,可得a2+b2=25,設出焦點坐標,根據(jù)拋物線的定義求得點A,B到準線的距離等于其到焦點的距離,然后兩式平方后分別相加和相減,聯(lián)立后求得x和y的關系式.
解答: 解:設切點為(a,b),∴a2+b2=25,則切線為:ax+by-25=0
設焦點(x,y),由拋物線定義可得:
(x-3)2+y2
=
|3a-25|
5
…①,
(x+4)2+y2
=
|3a+25|
5
…②,
所以可得:
x2
25
+
y2
16
=1.
依題意焦點不能與A,B共線,∴y≠0.
所以這列拋物線的焦點的軌跡方程是
x2
25
+
y2
16
=1(y≠0).
故選B.
點評:本題主要考查了拋物線的定義與橢圓的標準方程,考查了學生數(shù)形結(jié)合的思想及計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=1-xlnx的零點所在區(qū)間是(  )
A、(0,
1
2
B、(
1
2
,1)
C、(1,2)
D、(2,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f1(x)=sinx+cosx,fn+1(x)是fn (x)的導函數(shù),即f2(x)=f′1(x),f3(x)=f′2(x),…,fn+1(x)=f′n(x),n∈N*,則f2012(x)=(  )
A、sinx+cosx
B、sinx-cosx
C、-sinx+cosx
D、-sinx-cosx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合A=[x||x-1|<2},B={y|y2=2x,x∈[0,2]},則A∩B=( 。
A、[0,2]
B、(1,3)
C、(-1,2]
D、(1,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}是公差不為0的等差數(shù)列,且an≥0;又定義bn=
an
+
a2004-n
 (1≤n≤2003 ),則{bn}的最大項是(  )
A、b1001
B、b1002
C、b2003
D、不能確定的

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,a1=15,d=-2,則a9=( 。
A、-1B、1C、2D、-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在銳角△ABC中,BC=1,B=2A,則AC的取值范圍為( 。
A、(1,
2
B、(
2
,
3
C、(
3
,2)
D、(2,
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知(
x
+
2
x2
n的展開式的第5項的二項式系數(shù)與第3項的二項式系數(shù)之比為14:3.
(1)求正自然數(shù)n的值;     
(2)求展開式中的常數(shù)項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,△ABC中,AB=AC=1,∠A=120°,E,F(xiàn)分別是邊AB,AC上的點,且
AE
=m
AB
,
AF
=n
AC
,其中m,n∈(0,1),若EF,BC的中點分別為M,N,且m+n=1,則|
MN
|
的最小值是(  )
A、
1
2
B、
7
7
C、
1
4
D、
7
14

查看答案和解析>>

同步練習冊答案