已知關于x的不等式[(k2+6k+14)x-9][(k2+28)x-2k2-12k]<0的解集M與整數(shù)集Z滿足M∩Z={1},求常數(shù)k的取值范圍.
考點:其他不等式的解法
專題:不等式的解法及應用
分析:把x=1代入不等式,用穿根法解高次不等式,求得k的范圍.
解答: 解:把x=1代入不等式[(k2+6k+14)x-9][(k2+28)x-2k2-12k]<0,
可得(k2+6k+5)(-k2-12k+28)<0,
即(k+1)(k+5)(k+14)(k-2)>0,
用穿根法解得 k∈(-∞,-14)∪(-5,-1)∪(2,+∞).
點評:本題主要考查用穿根法解高次不等式,體現(xiàn)了轉化的數(shù)學思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù) y=f(x)的值域是[-1,2],函數(shù) y=f(-x)的值域為
 
,函數(shù) y=-f(x)的值域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知an,an+1是方程x2-(3n+2)x+bn=0的兩根,若a1=1,
(1)求證:數(shù)列{a2n}及{a2n-1}都是等差數(shù)列;
(2)求bn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y滿足約束條件
-x+2y≤0
x+2y≤12
2x+y≤16
x≥0
y≥0
,求目標函數(shù)z=3x+4y的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設直線l過橢圓
x2
4
+y2=1的右焦點,與橢圓相交于A、B兩點,O是坐標原點,當△OAB的面積最大時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解關于x的不等式:
(1)ax2+2x+1>0(a>0);
(2)
a-1
x-1
≥a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a≥b>0,求2a+
1
2a-b
的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某個團購網(wǎng)站為了更好地滿足消費者需求,對在其網(wǎng)站發(fā)布的團購產(chǎn)品展開了用戶調查,每個用戶在使用了團購產(chǎn)品后可以對該產(chǎn)品進行打分,最高分是10分.上個月該網(wǎng)站共賣出了100份團購產(chǎn)品,所有用戶打分的平均分作為該產(chǎn)品的參考分值,將這些產(chǎn)品按照得分分成以下幾組:第一組[0,2),第二組[2,4),第三組[4,6),第四組[6,8),第五組[8,10],得到的頻率分布直方圖如圖所示.
(Ⅰ)分別求第三,四,五組的頻率;
(Ⅱ)該網(wǎng)站在得分較高的第三,四,五組中用分層抽樣的方法抽取6個產(chǎn)品.
①已知甲產(chǎn)品和乙產(chǎn)品均在第三組,求甲、乙同時被選中的概率;
②某人決定在這6個產(chǎn)品中隨機抽取2個購買,設第4組中有X個產(chǎn)品被購買,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={a1,a2,a3,a4},集合B={b1,b2},其中ai,bj(i=1,2,3,4; j=1,2)均為實數(shù). 求:
(1)從集合A到集合B能構成多少個不同的映射?
(2)能構成多少個以集合A為定義域,以集合B為值域的不同函數(shù)?

查看答案和解析>>

同步練習冊答案