已知橢圓的離心率為,為橢圓的兩個焦點,點在橢圓上,且的周長為。
(Ⅰ)求橢圓的方程
(Ⅱ)設(shè)直線與橢圓相交于、兩點,若為坐標原點),求證:直線與圓相切.
(Ⅰ);(Ⅱ)詳見解析.

試題分析:(Ⅰ)借助題中的已知條件以及、、三者之間的相互關(guān)系確定、的值,從而確定橢圓的方程;(Ⅱ)對直線的斜率存在與不存在這兩種情況進行討論,即根據(jù)這個條件確定直線傾斜角為時,直線的方程,以及根據(jù)這個條件在斜率存在時方程、之間的等量關(guān)系,并借助圓心(原點)到直線的距離等于圓的半徑確定直線與圓相切.
試題解析:解(Ⅰ)由已知得,
解得,又
所以橢圓的方程為            4分
(Ⅱ)證明:有題意可知,直線不過坐標原點,設(shè)的坐標分別為
(。┊斨本軸時,直線的方程為

     
,解得
故直線的方程為
因此,點到直線的距離為
又圓的圓心為,半徑
所以直線與圓相切                     9分
(ⅱ)當直線不垂直于軸時,設(shè)直線的方程為
 得



  

       ①
又圓的圓心為,半徑
圓心到直線的距離為
    ②
將①式帶入②式得

所以
因此,直線與圓相切                   14分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的中心在坐標原點,焦點在x軸上,左、右焦瞇分別為F1,F(xiàn)2,且|F1F2|=2,點P(1,)在橢圓C上.
(I)求橢圓C的方程;
(II)過F1的直線l與橢圓C相交于A,B兩點,且的面積為,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:=1(a>b>0)的焦距為4,且與橢圓x2=1有相同的離心率,斜率為k的直線l經(jīng)過點M(0,1),與橢圓C交于不同的兩點A、B.
(1)求橢圓C的標準方程;
(2)當橢圓C的右焦點F在以AB為直徑的圓內(nèi)時,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,A,B是橢圓的兩個頂點, ,直線AB的斜率為.求橢圓的方程;(2)設(shè)直線平行于AB,與x,y軸分別交于點M、N,與橢圓相交于C、D,
證明:的面積等于的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的右焦點為 ,為橢圓的上頂點,為坐標原點,且兩焦點和短軸的兩端構(gòu)成邊長為的正方形.
(1)求橢圓的標準方程;
(2)是否存在直線交與橢圓于, ,且使,使得的垂心,若存在,求出點的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,等腰梯形中,,. 以,為焦點,且過點的雙曲線的離心率為;以,為焦點,且過點的橢圓的離心率為,則的取值范圍為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

為橢圓上一點,為兩焦點,,則橢圓的離心率        .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知橢圓,是長軸的左、右端點,動點滿足,聯(lián)結(jié),交橢圓于點

(1)當,時,設(shè),求的值;
(2)若為常數(shù),探究滿足的條件?并說明理由;
(3)直接寫出為常數(shù)的一個不同于(2)結(jié)論類型的幾何條件.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓,直線l為圓的一條切線,且經(jīng)過橢圓C的右焦點,直線l的傾斜角為,記橢圓C的離心率為e.
(1)求e的值;
(2)試判定原點關(guān)于l的對稱點是否在橢圓上,并說明理由。

查看答案和解析>>

同步練習冊答案