已知橢圓,直線l為圓的一條切線,且經(jīng)過橢圓C的右焦點,直線l的傾斜角為,記橢圓C的離心率為e.
(1)求e的值;
(2)試判定原點關(guān)于l的對稱點是否在橢圓上,并說明理由。
(1);(2)不在橢圓上

試題分析:(1)由題可得l的方程為    2分)
              4分
               5分
(2)設(shè)原點關(guān)于l的對稱點為,則 9分
,即:其對稱點不在橢圓上           12分
點評:熟練運用幾何關(guān)系轉(zhuǎn)化為橢圓中a,b,c的關(guān)系求解離心率,有關(guān)點關(guān)于直線的對稱問題,要注意求解的步驟
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,為橢圓的兩個焦點,點在橢圓上,且的周長為。
(Ⅰ)求橢圓的方程
(Ⅱ)設(shè)直線與橢圓相交于、兩點,若為坐標(biāo)原點),求證:直線與圓相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的右焦點在圓上,直線交橢圓于、兩點.
(1)求橢圓的方程;
(2)若(為坐標(biāo)原點),求的值;
(3)設(shè)點關(guān)于軸的對稱點為不重合),且直線軸交于點,試問的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知為橢圓的左右頂點,在長軸上隨機(jī)任取點,過作垂直于軸的直線交橢圓于點,則使的概率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點在軸上,離心率為,它的一個頂點恰好是拋物線的焦點.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點的直線與橢圓相切,直線軸交于點,當(dāng)為何值時的面積有最小值?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的左、右焦點分別為,
上頂點為,在軸負(fù)半軸上有一點,滿足,且

(Ⅰ)求橢圓的離心率;
(Ⅱ)是過三點的圓上的點,到直線的最大距離等于橢圓長軸的長,求橢圓的方程;
(Ⅲ)在(Ⅱ)的條件下,過右焦點作斜率為的直線與橢圓交于兩點,線段的中垂線與軸相交于點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

F1、F2是定點,|F1F2|=6,動點M滿足|MF1|+|MF2|=8,則點M的軌跡是( )
A.線段B.直線C.橢圓D.圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓的中心在原點,焦點在軸上,長軸長是短軸長的2倍,且經(jīng)過點(2,1),平行于直線軸上的截距為,設(shè)直線交橢圓于兩個不同點,

(1)求橢圓方程;
(2)求證:對任意的的允許值,的內(nèi)心在定直線。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓上一點到焦點的距離為2,的中點,則等于(  )
A.2B.C.D.

查看答案和解析>>

同步練習(xí)冊答案