【題目】直線l過直線x+y﹣2=0和直線x﹣y+4=0的交點(diǎn),且與直線3x﹣2y+4=0平行,求直線l的方程.
【答案】解:法一:聯(lián)立方程: 解得 ,即直線l過點(diǎn)(﹣1,3), ∵直線l的斜率為 ,
∴直線l的方程為:y﹣3= (x+1),即3x﹣2y+9=0.
法二:∵直線x+y﹣2=0不與3x﹣2y+4=0平行,
∴可設(shè)直線l的方程為:x﹣y+4+λ(x+y﹣2)=0,
整理得:(1+λ)x+(λ﹣1)y+4﹣2λ=0.
∵直線l與直線3x﹣2y+4=0平行,
∴ ,解得λ= ,
∴直線l的方程為: x﹣ y+ =0,
即3x﹣2y+9=0.
【解析】解法一:聯(lián)立方程,求得直線l經(jīng)過的點(diǎn)的坐標(biāo),再利用點(diǎn)斜式求得直線l的方程.解法二:設(shè)直線l的方程為:x﹣y+4+λ(x+y﹣2)=0,再根據(jù)直線l與直線3x﹣2y+4=0平行,解得λ的值,可得直線l的方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若在曲線f(x,y)=0(或y=f(x))上兩個(gè)不同點(diǎn)處的切線重合,則稱這條切線為曲線f(x,y)=0或y=f(x)的“自公切線”.下列方程:
①x2﹣y2=1;
②y=x2﹣|x|;
③y=3sinx+4cosx;
④|x|+1=
對應(yīng)的曲線中存在“自公切線”的有( )
A.①③
B.①④
C.②③
D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2cos2ωx+2sinωxcosωx(ω>0)的最小正周期為π.
(1)求f( )的值;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4;坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)中,曲線.
(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程.
(Ⅱ)求曲線上的點(diǎn)到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD的底面是矩形,側(cè)面PAB是正三角形,且平面PAB⊥平面ABCD,E是PA的中點(diǎn),AC與BD的交點(diǎn)為M.
(1)求證:PC∥平面EBD;
(2)求證:BE⊥平面AED.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一元二次不等式﹣x2+x+2>0的解集是( )
A.{x|x<﹣1或x>2}
B.{x|x<﹣2或x>1}
C.{x|﹣1<x<2}
D.{x|﹣2<x<1}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分)設(shè)關(guān)于的一元二次方程 ()有兩根和,且滿足.
(1)試用表示;
(2)求證:數(shù)列是等比數(shù)列;
(3)當(dāng)時(shí),求數(shù)列的通項(xiàng)公式,并求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=ax2﹣(2a+1)x+a+1對于a∈[﹣1,1]時(shí)恒有f(x)<0,則實(shí)數(shù)x的取值范圍是( )
A.(1,2)
B.(﹣∞,1)∪(2,+∞)
C.(0,1)
D.(﹣∞,0)∪(1,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com